$$z_{year_{ij}} \sim N(z_{site_j}, \sigma_{z_{year_{ij}}}^2)$$
(A10-2)  

$$z_{site_j} \sim N(\mu_{m_j}, \sigma_m^2)$$
  

$$\mu_{m_j} = \alpha_m + \beta_{m_1} * SIC_j + \beta_{m_2} * SA_j$$
  

$$\sigma_m \sim U(0, 10)$$
  

$$\alpha_m \sim N(0, 1000)$$
  

$$\beta_{m_1} \sim N(0, 1000)$$
  

$$\beta_{m_2} \sim N(0, 1000)$$

where *i* is year, *j* is site,  $z_{year}$  is the mean  $\delta^{15}N$  value for a given site/year (derived from the previous model - see Equation A10-1),  $\sigma^2_{z_{year}}$  is the variance about each estimate of  $z_{year}$  (derived from the previous model - see Equation A10-1),  $z_{site}$  is the mean  $\delta^{15}N$  value for a given site,  $\alpha_m$  is the intercept parameter,  $\beta_{m_1}$  represents the effect of average sea ice concentration within 150km of each breeding site during the austral summer (*SIC*) on  $\delta^{15}N$  values,  $\beta_{m_2}$  represents the effect of shelf area within 150km of each site (*SA*) on  $\delta^{15}N$  values, and  $\sigma_m$  represents the model error term.

### Population growth rate ~ $\delta^{15}N$

Estimates of Adélie penguin population growth rates for all known breeding sites around the Antarctic continent were taken from Che-Castaldo et al. (2017). These estimates and mean  $\delta^{15}N$  values at each site (and their associated uncertainties) were used to assess the relationship between penguin diet and population growth rate.

Inferences were obtained from 100,000 samples drawn from three chains, following a 'burn-in' period of 50,000 draws, a thinning rate of 20, and an adaptation phase of 8000 draws.

The following was used to assess the relationship between  $\delta^{15}N$  values and population growth rates at Adélie penguin breeding colonies:

$$g_{j} \sim N(\mu_{p_{j}}, \sigma_{g_{j}}^{2})$$
(A10-3)  
$$z_{site_{j}} \sim N(\mu_{c_{j}}, \sigma_{site_{j}}^{2})$$
  
$$\mu_{p_{j}} \sim N(\mu_{f_{j}}, \sigma_{f}^{2})$$
  
$$\mu_{f_{j}} = \alpha_{p} + \beta_{p} * \mu_{c_{j}}$$
  
$$\alpha_{p} \sim N(0, 1000)$$

$$\beta_p \sim N(0, 1000)$$
$$\mu_{c_i} \sim N(0, 1000)$$

where j is site,  $g_j$  is the mean estimated population growth rate (derived from Che-Castaldo et al. [2017]),  $\sigma_{g_j}^2$  is the variance about each estimate of  $g_j$  (derived from Che-Castaldo et al. [2017]),  $z_{site}$  is the mean  $\delta^{15}N$  value for a given site (derived from the previous model - see Equation A10-2),  $\sigma_{z_{site}}^2$  is the variance about each estimate of  $z_{site}$  (derived from the previous model - see Equation A10-2),  $\sigma_{z_{site}}^2$  is the variance about each estimate of  $z_{site}$  (derived from the previous model - see Equation A10-2),  $\alpha_p$  is the intercept parameter, and  $\beta_p$  represents the effect of  $\delta^{15}N$  values on population growth rates.

#### Model summary - $\delta^{15}N$ ~ time

All parameters converged and had acceptable effective sample sizes (n.eff) and Prior Posterior Overlap (PPO).

|           | mean   | sd    | 2.5%   | 50%    | 97.5%  | Rhat | n.eff |
|-----------|--------|-------|--------|--------|--------|------|-------|
| alpha[1]  | 20.001 | 1.003 | 17.918 | 20.029 | 21.931 | 1    | 10685 |
| alpha[2]  | 20.992 | 1.418 | 18.082 | 21.004 | 23.752 | 1    | 11576 |
| alpha[3]  | 23.562 | 1.245 | 21.068 | 23.574 | 26.003 | 1    | 11795 |
| alpha[4]  | 26.935 | 1.222 | 24.480 | 26.947 | 29.347 | 1    | 10639 |
| alpha[5]  | 22.160 | 1.226 | 19.738 | 22.172 | 24.550 | 1    | 11686 |
| alpha[6]  | 25.672 | 1.232 | 23.284 | 25.644 | 28.221 | 1    | 11799 |
| alpha[7]  | 25.116 | 1.276 | 22.560 | 25.129 | 27.631 | 1    | 10800 |
| alpha[8]  | 20.928 | 1.035 | 18.812 | 20.952 | 22.928 | 1    | 10532 |
| alpha[9]  | 24.163 | 1.188 | 21.757 | 24.180 | 26.519 | 1    | 12256 |
| alpha[10] | 18.832 | 1.343 | 16.084 | 18.856 | 21.386 | 1    | 10360 |
| alpha[11] | 21.134 | 0.825 | 19.449 | 21.162 | 22.701 | 1    | 9653  |
| alpha[12] | 23.314 | 1.212 | 20.809 | 23.341 | 25.655 | 1    | 10496 |
| alpha[13] | 24.577 | 1.188 | 22.292 | 24.547 | 26.999 | 1    | 10796 |
| alpha[14] | 24.101 | 0.953 | 22.202 | 24.113 | 25.958 | 1    | 11530 |
| alpha[15] | 27.268 | 0.961 | 25.308 | 27.296 | 29.106 | 1    | 9079  |
| alpha[16] | 23.883 | 1.466 | 20.959 | 23.898 | 26.793 | 1    | 11569 |
| alpha[17] | 19.269 | 1.437 | 16.364 | 19.281 | 22.037 | 1    | 10551 |
| alpha[18] | 23.005 | 0.842 | 21.485 | 22.958 | 24.764 | 1    | 5943  |
| alpha[19] | 23.267 | 1.026 | 21.248 | 23.265 | 25.284 | 1    | 12083 |
| alpha[20] | 21.166 | 1.190 | 18.686 | 21.213 | 23.437 | 1    | 10493 |
| alpha[21] | 23.489 | 1.059 | 21.476 | 23.463 | 25.708 | 1    | 10706 |
| alpha[22] | 23.115 | 1.003 | 20.957 | 23.188 | 24.904 | 1    | 7652  |
| alpha[23] | 21.423 | 1.168 | 19.002 | 21.453 | 23.663 | 1    | 11197 |
| alpha[24] | 27.588 | 1.646 | 24.344 | 27.560 | 30.856 | 1    | 11045 |
| alpha[25] | 27.970 | 1.295 | 25.415 | 27.961 | 30.528 | 1    | 10545 |
| alpha[26] | 24.066 | 0.972 | 22.076 | 24.079 | 25.976 | 1    | 10753 |
| alpha[27] | 23.311 | 1.484 | 20.382 | 23.315 | 26.270 | 1    | 11783 |
| alpha[28] | 20.274 | 1.286 | 17.584 | 20.349 | 22.636 | 1    | 10572 |
| alpha[29] | 21.083 | 1.172 | 18.746 | 21.112 | 23.335 | 1    | 11519 |
| alpha[30] | 23.670 | 1.077 | 21.667 | 23.605 | 25.981 | 1    | 10148 |

Table A10-3: Model summary table. For each parameter, the posterior mean; sd; 2.5%, 50%, and 97.5% quantiles; Rhat; and number of effective samples are shown.

|           | mean   | sd    | 2.5%   | 50%    | 97.5%  | Rhat | n.eff |
|-----------|--------|-------|--------|--------|--------|------|-------|
| alpha[31] | 23.679 | 0.804 | 22.160 | 23.656 | 25.332 | 1    | 10788 |
| alpha[32] | 24.067 | 1.639 | 20.845 | 24.061 | 27.289 | 1    | 10968 |
| alpha[33] | 24.122 | 1.120 | 21.803 | 24.136 | 26.269 | 1    | 11030 |
| alpha[34] | 24.664 | 0.882 | 22.938 | 24.666 | 26.420 | 1    | 12153 |
| alpha[35] | 19.945 | 1.336 | 17.227 | 19.982 | 22.514 | 1    | 11028 |
| alpha[36] | 24.915 | 1.178 | 22.484 | 24.943 | 27.169 | 1    | 10846 |
| alpha[37] | 22.155 | 1.007 | 20.091 | 22.176 | 24.140 | 1    | 11803 |
| alpha[38] | 26.697 | 1.074 | 24.591 | 26.690 | 28.827 | 1    | 11494 |
| alpha[39] | 19.815 | 1.371 | 16.952 | 19.884 | 22.379 | 1    | 10721 |
| alpha[40] | 25.627 | 1.297 | 23.144 | 25.589 | 28.300 | 1    | 11230 |
| alpha[41] | 21.819 | 0.990 | 19.813 | 21.821 | 23.796 | 1    | 11707 |
| alpha[42] | 24.840 | 1.030 | 22.932 | 24.773 | 27.036 | 1    | 9838  |
| alpha[43] | 22.902 | 1.000 | 20.879 | 22.911 | 24.870 | 1    | 11727 |
| alpha[44] | 20.839 | 1.125 | 18.464 | 20.880 | 23.020 | 1    | 10909 |
| alpha[45] | 22.440 | 1.224 | 20.027 | 22.453 | 24.841 | 1    | 11698 |
| alpha[46] | 20.266 | 1.195 | 17.862 | 20.278 | 22.652 | 1    | 11438 |
| alpha[47] | 20.087 | 1.195 | 17.661 | 20.102 | 22.405 | 1    | 11110 |
| alpha[48] | 24.032 | 1.215 | 21.891 | 23.986 | 26.543 | 1    | 3009  |
| alpha[49] | 21.776 | 1.124 | 19.467 | 21.812 | 23.900 | 1    | 11742 |
| alpha[50] | 25.712 | 1.239 | 23.164 | 25.749 | 28.141 | 1    | 9857  |
| alpha[51] | 20.684 | 0.774 | 19.104 | 20.692 | 22.149 | 1    | 10725 |
| alpha[52] | 19.842 | 1.310 | 17.135 | 19.885 | 22.328 | 1    | 10226 |
| alpha[53] | 20.690 | 1.092 | 18.427 | 20.709 | 22.787 | 1    | 10901 |
| alpha[54] | 25.170 | 0.910 | 23.481 | 25.127 | 27.119 | 1    | 10522 |
| alpha[55] | 20.978 | 1.068 | 18.812 | 20.987 | 23.063 | 1    | 11894 |
| alpha[56] | 26.363 | 1.603 | 23.081 | 26.404 | 29.442 | 1    | 7993  |
| alpha[57] | 23.523 | 1.141 | 21.209 | 23.524 | 25.772 | 1    | 11668 |
| alpha[58] | 18.898 | 1.338 | 16.168 | 18.923 | 21.486 | 1    | 10222 |
| alpha[59] | 20.437 | 1.095 | 18.256 | 20.423 | 22.607 | 1    | 10690 |
| alpha[60] | 22.027 | 1.320 | 19.280 | 22.062 | 24.554 | 1    | 12000 |
| alpha[61] | 23.922 | 1.382 | 21.199 | 23.920 | 26.689 | 1    | 11175 |
| alpha[62] | 23.117 | 0.792 | 21.607 | 23.101 | 24.726 | 1    | 11272 |
| alpha[63] | 25.424 | 1.197 | 23.075 | 25.422 | 27.863 | 1    | 11853 |
| alpha[64] | 24.886 | 0.891 | 23.071 | 24.908 | 26.543 | 1    | 9134  |
| alpha[65] | 25.280 | 1.224 | 22.713 | 25.339 | 27.551 | 1    | 9034  |
| alpha[66] | 26.025 | 1.273 | 23.488 | 26.019 | 28.534 | 1    | 11353 |
| alpha[67] | 20.638 | 1.218 | 18.041 | 20.699 | 22.887 | 1    | 11227 |
| alpha[68] | 22.929 | 1.085 | 20.766 | 22.940 | 25.053 | 1    | 11875 |
| alpha[69] | 22.018 | 1.206 | 19.601 | 22.032 | 24.401 | 1    | 11581 |
| alpha[70] | 24.380 | 1.065 | 22.246 | 24.383 | 26.486 | 1    | 11650 |
| alpha[71] | 19.924 | 1.203 | 17.523 | 19.932 | 22.266 | 1    | 11047 |
| alpha[72] | 21.097 | 1.143 | 18.839 | 21.096 | 23.385 | 1    | 11886 |
| alpha[73] | 22.273 | 0.980 | 20.258 | 22.290 | 24.164 | 1    | 10927 |
| alpha[74] | 21.781 | 0.962 | 19.936 | 21.756 | 23.731 | 1    | 10598 |
| alpha[75] | 25.799 | 1.003 | 23.786 | 25.812 | 27.785 | 1    | 10906 |
| alpha[76] | 22.328 | 0.977 | 20.552 | 22.275 | 24.410 | 1    | 7344  |
| alpha[77] | 25.037 | 1.035 | 22.884 | 25.097 | 26.913 | 1    | 7494  |
| alpha[78] | 20.676 | 1.190 | 18.201 | 20.723 | 22.929 | 1    | 10547 |
|           |        |       |        |        |        |      |       |

Table A10-3 (cont.): Model summary table. For each parameter, the posterior mean; sd; 2.5%, 50%, and 97.5% quantiles; Rhat; and number of effective samples are shown.

|            | mean   | sd    | 2.5%   | 50%    | 97.5%  | Rhat | n.eff |
|------------|--------|-------|--------|--------|--------|------|-------|
| alpha[79]  | 21.799 | 1.309 | 19.080 | 21.867 | 24.219 | 1    | 9295  |
| alpha[80]  | 21.206 | 1.137 | 18.928 | 21.215 | 23.424 | 1    | 10899 |
| alpha[81]  | 25.597 | 1.208 | 23.221 | 25.588 | 28.068 | 1    | 11478 |
| alpha[82]  | 23.887 | 1.036 | 21.845 | 23.878 | 25.977 | 1    | 11477 |
| alpha[83]  | 25.673 | 1.063 | 23.597 | 25.673 | 27.779 | 1    | 11643 |
| alpha[84]  | 19.763 | 1.331 | 16.978 | 19.809 | 22.309 | 1    | 11003 |
| alpha[85]  | 22.333 | 1.167 | 19.991 | 22.344 | 24.660 | 1    | 12058 |
| alpha[86]  | 26.275 | 1.353 | 23.674 | 26.257 | 28.960 | 1    | 10778 |
| alpha[87]  | 21.354 | 1.444 | 18.412 | 21.388 | 24.175 | 1    | 10897 |
| alpha[88]  | 20.513 | 1.413 | 17.627 | 20.532 | 23.296 | 1    | 11607 |
| alpha[89]  | 24.121 | 0.832 | 22.557 | 24.083 | 25.856 | 1    | 9278  |
| alpha[90]  | 23.694 | 1.684 | 20.402 | 23.694 | 27.002 | 1    | 12089 |
| alpha[91]  | 22.214 | 1.055 | 20.131 | 22.222 | 24.332 | 1    | 12000 |
| alpha[92]  | 25.261 | 1.039 | 23.155 | 25.272 | 27.343 | 1    | 10926 |
| alpha[93]  | 20.655 | 1.492 | 17.628 | 20.683 | 23.548 | 1    | 11807 |
| alpha[94]  | 19.904 | 1.238 | 17.267 | 19.966 | 22.193 | 1    | 10288 |
| alpha[95]  | 19.885 | 1.390 | 17.125 | 19.910 | 22.605 | 1    | 11659 |
| alpha[96]  | 24.690 | 1.025 | 22.497 | 24.746 | 26.574 | 1    | 7670  |
| alpha[97]  | 23.895 | 1.149 | 21.428 | 23.953 | 26.043 | 1    | 9184  |
| alpha[98]  | 23.684 | 0.897 | 21.842 | 23.732 | 25.353 | 1    | 9575  |
| alpha[99]  | 21.883 | 1.069 | 19.730 | 21.887 | 24.021 | 1    | 11666 |
| alpha[100] | 19,119 | 1.336 | 16,480 | 19.145 | 21.715 | 1    | 10829 |
| alpha[101] | 25.405 | 0.903 | 23.586 | 25.433 | 27.102 | 1    | 8318  |
| alpha[102] | 22.441 | 1.110 | 20.379 | 22.391 | 24.780 | 1    | 11642 |
| alpha[103] | 25.505 | 1.247 | 22.937 | 25.516 | 27.956 | 1    | 11002 |
| alpha[104] | 20.625 | 1.233 | 18.152 | 20.638 | 23.036 | 1    | 10766 |
| alpha[105] | 24,989 | 1.362 | 22.335 | 24.977 | 27.769 | 1    | 11794 |
| alpha[106] | 21.903 | 1.336 | 19.038 | 21.992 | 24.338 | 1    | 8650  |
| alpha[107] | 25.917 | 0.866 | 24.232 | 25.897 | 27.662 | 1    | 12114 |
| alpha[108] | 27.405 | 1.112 | 25.463 | 27.320 | 29.802 | 1    | 4737  |
| alpha[109] | 24.559 | 0.837 | 22.972 | 24.534 | 26.285 | 1    | 10432 |
| alpha[110] | 23.295 | 1.126 | 21.072 | 23.291 | 25.542 | 1    | 12113 |
| alpha[111] | 24.561 | 1.410 | 21.786 | 24.575 | 27.321 | 1    | 10174 |
| alpha[112] | 24.019 | 1.457 | 21.144 | 24.011 | 26.954 | 1    | 11694 |
| alpha[113] | 25.186 | 0.877 | 23.472 | 25.175 | 26.938 | 1    | 11629 |
| alpha[114] | 25.529 | 1.281 | 22.916 | 25.565 | 28.016 | 1    | 10996 |
| alpha[115] | 21.384 | 1.145 | 19.123 | 21.354 | 23.755 | 1    | 10796 |
| alpha[116] | 21.732 | 1.161 | 19.357 | 21.754 | 24.038 | 1    | 12311 |
| alpha[117] | 22.550 | 0.875 | 20.739 | 22.573 | 24.257 | 1    | 10615 |
| alpha[118] | 20.849 | 1.468 | 17.861 | 20.874 | 23.680 | 1    | 11671 |
| alpha[119] | 24.487 | 1.180 | 22.156 | 24.494 | 26.830 | 1    | 11274 |
| alpha[120] | 26.107 | 1.164 | 23.794 | 26.119 | 28.380 | 1    | 10076 |
| alpha[121] | 20.524 | 1.245 | 18.043 | 20.541 | 22,902 | 1    | 11472 |
| alpha[122] | 22.586 | 1.099 | 20.476 | 22.541 | 24.920 | 1    | 11163 |
| alpha[123] | 22.502 | 0.887 | 20.777 | 22.487 | 24,286 | 1    | 11727 |
| alpha[124] | 22.296 | 1.304 | 19.689 | 22.284 | 24.868 | 1    | 11969 |
| alpha[125] | 21.981 | 0.958 | 19.964 | 22.018 | 23.795 | 1    | 10405 |
| alpha[126] | 26.219 | 1.225 | 23.754 | 26.228 | 28.648 | 1    | 11127 |
| - T        |        |       |        |        |        |      |       |

Table A10-3 (cont.): Model summary table. For each parameter, the posterior mean; sd; 2.5%, 50%, and 97.5% quantiles; Rhat; and number of effective samples are shown.

|            | mean   | sd    | 2.5%   | 50%    | 97.5%  | Rhat | n.eff |
|------------|--------|-------|--------|--------|--------|------|-------|
| alpha[127] | 26.564 | 1.249 | 24.148 | 26.555 | 29.061 | 1    | 10994 |
| alpha[128] | 20.253 | 0.978 | 18.177 | 20.299 | 22.078 | 1    | 10510 |
| alpha[129] | 19.606 | 0.986 | 17.583 | 19.621 | 21.497 | 1    | 10206 |
| alpha[130] | 19.801 | 1.360 | 16.893 | 19.859 | 22.310 | 1    | 11151 |
| alpha[131] | 22.502 | 1.305 | 19.871 | 22.526 | 25.004 | 1    | 11272 |
| alpha[132] | 24.125 | 0.922 | 22.232 | 24.159 | 25.867 | 1    | 11394 |
| alpha[133] | 24.431 | 0.977 | 22.366 | 24.488 | 26.241 | 1    | 7101  |
| alpha[134] | 22.520 | 1.153 | 20.153 | 22.534 | 24.810 | 1    | 11679 |
| alpha[135] | 19.649 | 1.373 | 16.857 | 19.686 | 22.334 | 1    | 11252 |
| alpha[136] | 21.266 | 0.971 | 19.284 | 21.299 | 23.122 | 1    | 10918 |
| beta[1]    | 0.012  | 0.042 | -0.068 | 0.011  | 0.100  | 1    | 10119 |
| beta[2]    | 0.006  | 0.048 | -0.092 | 0.005  | 0.104  | 1    | 11549 |
| beta[3]    | 0.025  | 0.045 | -0.066 | 0.023  | 0.118  | 1    | 11537 |
| beta[4]    | 0.047  | 0.047 | -0.046 | 0.046  | 0.143  | 1    | 10144 |
| beta[5]    | 0.026  | 0.045 | -0.060 | 0.023  | 0.119  | 1    | 10408 |
| beta[6]    | 0.026  | 0.045 | -0.070 | 0.027  | 0.117  | 1    | 11556 |
| beta[7]    | 0.041  | 0.046 | -0.047 | 0.039  | 0.139  | 1    | 9469  |
| beta[8]    | 0.016  | 0.043 | -0.068 | 0.014  | 0.105  | 1    | 10349 |
| beta[9]    | 0.025  | 0.044 | -0.062 | 0.024  | 0.115  | 1    | 12040 |
| beta[10]   | -0.008 | 0.051 | -0.109 | -0.008 | 0.097  | 1    | 9610  |
| beta[11]   | 0.026  | 0.036 | -0.042 | 0.024  | 0.101  | 1    | 9372  |
| beta[12]   | 0.030  | 0.044 | -0.054 | 0.027  | 0.126  | 1    | 10444 |
| beta[13]   | 0.011  | 0.042 | -0.080 | 0.014  | 0.092  | 1    | 10930 |
| beta[14]   | 0.030  | 0.039 | -0.049 | 0.029  | 0.112  | 1    | 11600 |
| beta[15]   | 0.056  | 0.042 | -0.022 | 0.054  | 0.143  | 1    | 8024  |
| beta[16]   | 0.029  | 0.047 | -0.065 | 0.027  | 0.131  | 1    | 10847 |
| beta[17]   | -0.013 | 0.049 | -0.112 | -0.012 | 0.085  | 1    | 9596  |
| beta[18]   | -0.035 | 0.038 | -0.115 | -0.033 | 0.030  | 1    | 4933  |
| beta[19]   | 0.014  | 0.040 | -0.068 | 0.014  | 0.093  | 1    | 12638 |
| beta[20]   | 0.019  | 0.045 | -0.066 | 0.016  | 0.116  | 1    | 10254 |
| beta[21]   | 0.003  | 0.042 | -0.088 | 0.005  | 0.081  | 1    | 9997  |
| beta[22]   | 0.053  | 0.042 | -0.020 | 0.048  | 0.144  | 1    | 7044  |
| beta[23]   | 0.012  | 0.044 | -0.075 | 0.011  | 0.105  | 1    | 10898 |
| beta[24]   | 0.048  | 0.053 | -0.055 | 0.047  | 0.160  | 1    | 10871 |
| beta[25]   | 0.055  | 0.049 | -0.043 | 0.054  | 0.155  | 1    | 9968  |
| beta[26]   | 0.030  | 0.040 | -0.048 | 0.029  | 0.113  | 1    | 11388 |
| beta[27]   | 0.013  | 0.045 | -0.081 | 0.013  | 0.102  | 1    | 12102 |
| beta[28]   | 0.016  | 0.048 | -0.076 | 0.013  | 0.119  | 1    | 9907  |
| beta[29]   | 0.013  | 0.044 | -0.073 | 0.012  | 0.107  | 1    | 11283 |
| beta[30]   | -0.005 | 0.043 | -0.098 | -0.001 | 0.074  | 1    | 9081  |
| beta[31]   | 0.000  | 0.034 | -0.071 | 0.002  | 0.064  | 1    | 10222 |
| beta[32]   | 0.020  | 0.046 | -0.075 | 0.019  | 0.114  | 1    | 11598 |
| beta[33]   | 0.030  | 0.043 | -0.054 | 0.028  | 0.119  | 1    | 11577 |
| beta[34]   | 0.023  | 0.039 | -0.056 | 0.023  | 0.101  | 1    | 12131 |
| beta[35]   | -0.001 | 0.049 | -0.099 | -0.002 | 0.100  | 1    | 11229 |
| beta[36]   | 0.043  | 0.044 | -0.041 | 0.040  | 0.138  | 1    | 10656 |
| beta[37]   | 0.012  | 0.040 | -0.069 | 0.011  | 0.094  | 1    | 11939 |
| beta[38]   | 0.038  | 0.043 | -0.052 | 0.038  | 0.125  | 1    | 11815 |

Table A10-3 (cont.): Model summary table. For each parameter, the posterior mean; sd; 2.5%, 50%, and 97.5% quantiles; Rhat; and number of effective samples are shown.

|                                                                  | mean   | sd    | 2.5%   | 50%    | 97.5% | Rhat | n.eff |
|------------------------------------------------------------------|--------|-------|--------|--------|-------|------|-------|
| beta[39]                                                         | 0.011  | 0.049 | -0.080 | 0.008  | 0.117 | 1    | 10448 |
| beta[40]                                                         | 0.024  | 0.046 | -0.072 | 0.025  | 0.116 | 1    | 11288 |
| beta[41]                                                         | 0.006  | 0.040 | -0.075 | 0.006  | 0.085 | 1    | 11674 |
| beta[42]                                                         | 0.001  | 0.041 | -0.089 | 0.004  | 0.076 | 1    | 8981  |
| beta[43]                                                         | 0.021  | 0.040 | -0.059 | 0.019  | 0.104 | 1    | 11556 |
| beta[44]                                                         | 0.012  | 0.046 | -0.078 | 0.010  | 0.112 | 1    | 10764 |
| beta[45]                                                         | 0.007  | 0.046 | -0.087 | 0.008  | 0.097 | 1    | 11422 |
| beta[46]                                                         | 0.001  | 0.048 | -0.096 | 0.001  | 0.100 | 1    | 10911 |
| beta[47]                                                         | -0.002 | 0.047 | -0.097 | -0.002 | 0.094 | 1    | 10909 |
| beta[48]                                                         | -0.081 | 0.056 | -0.195 | -0.079 | 0.013 | 1    | 2695  |
| beta[49]                                                         | 0.025  | 0.043 | -0.058 | 0.022  | 0.117 | 1    | 10726 |
| beta[50]                                                         | 0.047  | 0.046 | -0.042 | 0.045  | 0.145 | 1    | 9552  |
| beta[51]                                                         | 0.016  | 0.035 | -0.051 | 0.015  | 0.089 | 1    | 9991  |
| beta[52]                                                         | 0.003  | 0.047 | -0.090 | 0.002  | 0.101 | 1    | 10762 |
| beta[53]                                                         | 0.009  | 0.043 | -0.076 | 0.008  | 0.101 | 1    | 11026 |
| beta[54]                                                         | 0.007  | 0.038 | -0.076 | 0.010  | 0.076 | 1    | 9968  |
| beta[55]                                                         | 0.001  | 0.042 | -0.082 | 0.002  | 0.087 | 1    | 11847 |
| beta[56]                                                         | 0.076  | 0.054 | -0.015 | 0.070  | 0.196 | 1    | 6416  |
| beta[57]                                                         | 0.017  | 0.043 | -0.071 | 0.016  | 0.105 | 1    | 11807 |
| beta[58]                                                         | -0.007 | 0.051 | -0.110 | -0.008 | 0.096 | 1    | 9682  |
| beta[59]                                                         | -0.007 | 0.044 | -0.097 | -0.005 | 0.080 | 1    | 10914 |
| beta[60]                                                         | 0.019  | 0.045 | -0.068 | 0.017  | 0.119 | 1    | 11605 |
|                                                                  | 0.018  | 0.049 | -0.082 | 0.018  | 0.118 | 1    | 11941 |
| beta[62]                                                         | 0.010  | 0.035 | -0.068 | 0.005  | 0.072 | 1    | 11305 |
| beta[63]                                                         | 0.034  | 0.033 | -0.056 | 0.003  | 0.125 | 1    | 11722 |
| beta[64]                                                         | 0.054  | 0.039 | -0.017 | 0.033  | 0.123 | 1    | 8769  |
| beta[65]                                                         | 0.052  | 0.039 | -0.028 | 0.049  | 0.154 | 1    | 7914  |
| beta[66]                                                         | 0.037  | 0.046 | -0.028 | 0.032  | 0.102 | 1    | 11205 |
| beta[67]                                                         | 0.045  | 0.040 | 0.072  | 0.041  | 0.138 | 1    | 11201 |
| beta[68]                                                         | 0.013  | 0.040 | -0.072 | 0.013  | 0.113 | 1    | 11682 |
| beta[60]                                                         | 0.023  | 0.042 | -0.002 | 0.022  | 0.008 | 1    | 11065 |
| boto[70]                                                         | 0.011  | 0.043 | -0.074 | 0.011  | 0.098 | 1    | 11622 |
| boto[71]                                                         | 0.020  | 0.041 | -0.038 | 0.020  | 0.112 | 1    | 0051  |
| $\frac{\text{Deta}[71]}{\text{boto}[72]}$                        | -0.012 | 0.043 | -0.100 | -0.010 | 0.070 | 1    | 11210 |
| bete[72]                                                         | 0.000  | 0.044 | -0.093 | 0.001  | 0.000 | 1    | 10258 |
| $\frac{\text{Deta}[73]}{\text{hoto}[74]}$                        | 0.021  | 0.040 | -0.030 | 0.019  | 0.107 | 1    | 10338 |
| beta[74]                                                         | -0.007 | 0.039 | -0.088 | -0.003 | 0.070 | 1    | 0672  |
| $\frac{\text{Deta}[75]}{\text{hoto}[76]}$                        | 0.044  | 0.040 | -0.033 | 0.042  | 0.127 | 1    | 7022  |
| $\frac{\text{beta}[70]}{1 \text{ sta}[77]}$                      | -0.028 | 0.042 | -0.121 | -0.024 | 0.040 | 1    | (022  |
| $\frac{\text{Deta}[77]}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$ | 0.003  | 0.045 | -0.013 | 0.000  | 0.134 | 1    | 10(10 |
| $\frac{\text{beta}[/8]}{1 + [70]}$                               | 0.011  | 0.045 | -0.076 | 0.009  | 0.105 | 1    | 10610 |
| beta[/9]                                                         | 0.034  | 0.047 | -0.050 | 0.029  | 0.139 | 1    | 8/3/  |
| beta[80]                                                         | 0.005  | 0.042 | -0.080 | 0.006  | 0.090 | 1    | 11095 |
| beta[81]                                                         | 0.030  | 0.044 | -0.061 | 0.030  | 0.119 | 1    | 11124 |
| beta[82]                                                         | 0.022  | 0.040 | -0.061 | 0.021  | 0.103 | 1    | 11785 |
| beta[83]                                                         | 0.038  | 0.042 | -0.043 | 0.037  | 0.125 | 1    | 11104 |
| beta[84]                                                         | 0.001  | 0.047 | -0.092 | 0.001  | 0.100 | 1    | 10635 |
| beta[85]                                                         | 0.012  | 0.043 | -0.077 | 0.012  | 0.099 | 1    | 12163 |
| beta[86]                                                         | 0.043  | 0.048 | -0.049 | 0.041  | 0.144 | 1    | 10282 |

Table A10-3 (cont.): Model summary table. For each parameter, the posterior mean; sd; 2.5%, 50%, and 97.5% quantiles; Rhat; and number of effective samples are shown.

|                                             |        | 1     | 0.50/  | 500/   | 07.50/ | D1 ( | <u> </u> |
|---------------------------------------------|--------|-------|--------|--------|--------|------|----------|
| 1 ( [07]                                    | mean   | sd    | 2.5%   | 50%    | 97.5%  | Rhat | n.eff    |
| $\frac{\text{beta}[8/]}{1 \text{ sta}[88]}$ | 0.008  | 0.045 | -0.084 | 0.007  | 0.102  | 1    | 11136    |
| beta[88]                                    | -0.001 | 0.046 | -0.095 | 0.000  | 0.091  | 1    | 0712     |
| beta[89]                                    | -0.005 | 0.036 | -0.080 | -0.002 | 0.062  | 1    | 8/13     |
| beta[90]                                    | 0.023  | 0.046 | -0.074 | 0.022  | 0.117  | 1    | 11/46    |
| beta[91]                                    | 0.005  | 0.042 | -0.083 | 0.006  | 0.089  | 1    | 11082    |
| beta[92]                                    | 0.037  | 0.040 | -0.042 | 0.036  | 0.121  | l    | 9896     |
| beta[93]                                    | 0.000  | 0.047 | -0.095 | 0.001  | 0.096  | 1    | 11789    |
| beta[94]                                    | 0.018  | 0.048 | -0.072 | 0.015  | 0.123  | 1    | 9618     |
| beta[95]                                    | -0.001 | 0.049 | -0.102 | -0.001 | 0.100  | 1    | 10602    |
| beta[96]                                    | 0.057  | 0.042 | -0.016 | 0.054  | 0.148  | 1    | 6477     |
| beta[97]                                    | 0.045  | 0.044 | -0.036 | 0.041  | 0.142  | 1    | 9448     |
| beta[98]                                    | 0.048  | 0.038 | -0.021 | 0.045  | 0.129  | 1    | 7051     |
| beta[99]                                    | 0.010  | 0.042 | -0.077 | 0.010  | 0.096  | 1    | 11058    |
| beta[100]                                   | -0.010 | 0.049 | -0.110 | -0.010 | 0.091  | 1    | 10351    |
| beta[101]                                   | 0.056  | 0.039 | -0.016 | 0.053  | 0.138  | 1    | 8019     |
| beta[102]                                   | -0.004 | 0.043 | -0.098 | -0.001 | 0.078  | 1    | 11371    |
| beta[103]                                   | 0.047  | 0.046 | -0.041 | 0.044  | 0.143  | 1    | 10004    |
| beta[104]                                   | 0.004  | 0.046 | -0.090 | 0.004  | 0.098  | 1    | 11709    |
| beta[105]                                   | 0.027  | 0.045 | -0.066 | 0.027  | 0.118  | 1    | 11830    |
| beta[106]                                   | 0.035  | 0.047 | -0.049 | 0.029  | 0.138  | 1    | 8327     |
| beta[107]                                   | 0.025  | 0.037 | -0.051 | 0.025  | 0.097  | 1    | 11825    |
| beta[108]                                   | -0.028 | 0.048 | -0.134 | -0.024 | 0.053  | 1    | 4231     |
| beta[109]                                   | 0.007  | 0.036 | -0.068 | 0.009  | 0.074  | 1    | 11553    |
| beta[110]                                   | 0.024  | 0.043 | -0.061 | 0.022  | 0.115  | 1    | 11490    |
| beta[111]                                   | 0.037  | 0.047 | -0.055 | 0.034  | 0.138  | 1    | 10778    |
| beta[112]                                   | 0.028  | 0.045 | -0.062 | 0.027  | 0.123  | 1    | 11410    |
| beta[113]                                   | 0.027  | 0.037 | -0.048 | 0.027  | 0.101  | 1    | 11865    |
| beta[114]                                   | 0.044  | 0.046 | -0.046 | 0.041  | 0.140  | 1    | 10353    |
| beta[115]                                   | -0.003 | 0.044 | -0.096 | -0.001 | 0.084  | 1    | 10812    |
| beta[116]                                   | 0.011  | 0.044 | -0.077 | 0.010  | 0.102  | 1    | 11920    |
| beta[117]                                   | 0.028  | 0.037 | -0.045 | 0.026  | 0.107  | 1    | 11478    |
| beta[118]                                   | 0.008  | 0.050 | -0.091 | 0.007  | 0.109  | 1    | 10942    |
| beta[119]                                   | 0.032  | 0.044 | -0.056 | 0.030  | 0.125  | 1    | 11417    |
| beta[120]                                   | 0.063  | 0.047 | -0.020 | 0.059  | 0.167  | 1    | 7839     |
| beta[121]                                   | 0.002  | 0.046 | -0.092 | 0.002  | 0.093  | 1    | 10912    |
| beta[122]                                   | -0.001 | 0.043 | -0.093 | 0.001  | 0.081  | 1    | 10717    |
| beta[123]                                   | 0.006  | 0.037 | -0.069 | 0.007  | 0.079  | 1    | 11614    |
| beta[124]                                   | 0.009  | 0.047 | -0.091 | 0.009  | 0.105  | 1    | 11528    |
| beta[125]                                   | 0.028  | 0.040 | -0.048 | 0.025  | 0.113  | 1    | 9822     |
| beta[126]                                   | 0.047  | 0.047 | -0.045 | 0.045  | 0.146  | 1    | 10180    |
| beta[127]                                   | 0.034  | 0.047 | -0.063 | 0.034  | 0.129  | 1    | 9886     |
| beta[128]                                   | 0.015  | 0.041 | -0.060 | 0.013  | 0.102  | 1    | 10181    |
| beta[129]                                   | 0.005  | 0.041 | -0.075 | 0.004  | 0.090  | 1    | 9955     |
| beta[130]                                   | 0.013  | 0.048 | -0.077 | 0.009  | 0.118  | 1    | 10003    |
| beta[131]                                   | 0.021  | 0.046 | -0.069 | 0.018  | 0.118  | 1    | 10934    |
| beta[132]                                   | 0.040  | 0.039 | -0.030 | 0.037  | 0.123  | 1    | 11112    |
| beta[133]                                   | 0.064  | 0.042 | -0.009 | 0.060  | 0.156  | 1    | 6277     |
| beta[134]                                   | 0.016  | 0.043 | -0.069 | 0.015  | 0.106  | 1    | 11812    |
| J                                           |        |       |        |        |        | -    |          |

Table A10-3 (cont.): Model summary table. For each parameter, the posterior mean; sd; 2.5%, 50%, and 97.5% quantiles; Rhat; and number of effective samples are shown.

|               | mean   | sd    | 2.5%   | 50%    | 97.5%  | Rhat | n.eff |
|---------------|--------|-------|--------|--------|--------|------|-------|
| beta[135]     | 0.000  | 0.048 | -0.096 | -0.001 | 0.100  | 1    | 10667 |
| beta[136]     | 0.018  | 0.040 | -0.060 | 0.016  | 0.102  | 1    | 10746 |
| mu.a          | 22.975 | 0.312 | 22.351 | 22.980 | 23.566 | 1    | 8490  |
| mu.b          | 0.019  | 0.011 | -0.002 | 0.019  | 0.040  | 1    | 6706  |
| rho           | 0.005  | 0.322 | -0.512 | -0.037 | 0.765  | 1    | 2240  |
| sigma.a       | 2.506  | 0.306 | 1.945  | 2.489  | 3.146  | 1    | 5954  |
| sigma.b       | 0.047  | 0.015 | 0.015  | 0.047  | 0.075  | 1    | 1718  |
| sigma.z       | 1.679  | 0.049 | 1.585  | 1.678  | 1.776  | 1    | 9603  |
| sigma.z_scene | 0.909  | 0.010 | 0.889  | 0.909  | 0.929  | 1    | 2691  |
| sigma.z_year  | 0.776  | 0.010 | 0.757  | 0.776  | 0.796  | 1    | 2598  |

Table A10-3 (cont.): Model summary table. For each parameter, the posterior mean; sd; 2.5%, 50%, and 97.5% quantiles; Rhat; and number of effective samples are shown.

Trace plots and prior posterior overlap -  $\delta^{15}N$  ~ time



Density - sigma.z\_scene



Figure A10-26: Posterior trace plot (left) and prior posterior overlap (right) for  $\sigma_{scene}$ 

Trace – sigma.z\_year







Figure A10-28: Posterior trace plot (left) and prior posterior overlap (right) for  $\sigma_z$ 

Trace – mu.a



Figure A10-29: Posterior trace plot (left) and prior posterior overlap (right) for  $\bar{\alpha}$ 



Figure A10-30: Posterior trace plot (left) and prior posterior overlap (right) for  $\bar{\beta}$ 



Density - sigma.a







Figure A10-32: Posterior trace plot (left) and prior posterior overlap (right) for  $\sigma_{\beta}$ 

Trace – rho

Density - rho



Figure A10-33: Posterior trace plot (left) and prior posterior overlap (right) for  $\rho$ 

# Model summary - $\delta^{15}N$ ~ SIC + SA

All parameters converged and had acceptable effective sample sizes (n.eff) and PPO.

Table A10-4: Model summary table. For each parameter, the posterior mean; sd; 2.5%, 50%, and 97.5% quantiles; Rhat; and number of effective samples are shown.

|         | mean   | sd    | 2.5%   | 50%    | 97.5%  | Rhat | n.eff |
|---------|--------|-------|--------|--------|--------|------|-------|
| alpha_m | 23.183 | 0.165 | 22.861 | 23.182 | 23.506 | 1    | 28964 |
| beta_m1 | -0.234 | 0.198 | -0.621 | -0.235 | 0.158  | 1    | 27830 |
| beta_m2 | -2.009 | 0.197 | -2.393 | -2.009 | -1.623 | 1    | 29456 |
| sigma_m | 1.888  | 0.119 | 1.673  | 1.881  | 2.136  | 1    | 16475 |

Trace plots and prior posterior overlap -  $\delta^{15}N \sim {\rm SIC} + {\rm SA}$ 

Trace – sigma\_m







Figure A10-35: Posterior trace plot (left) and prior posterior overlap (right) for  $\alpha_m$ 



Density - beta\_m1







Figure A10-37: Posterior trace plot (left) and prior posterior overlap (right) for  $\beta_{m_2}$ 

## Model summary - Population growth rate ~ $\delta^{15}N$

All parameters converged and had acceptable effective sample sizes (n.eff) and PPO.

Table A10-5: Model summary table. For each parameter, the posterior mean; sd; 2.5%, 50%, and 97.5% quantiles; Rhat; and number of effective samples are shown.

|         | mean  | sd    | 2.5%  | 50%   | 97.5% | Rhat | n.eff |
|---------|-------|-------|-------|-------|-------|------|-------|
| alpha_p | 0.886 | 0.034 | 0.821 | 0.885 | 0.952 | 1.01 | 624   |
| beta_p  | 0.006 | 0.001 | 0.003 | 0.006 | 0.009 | 1.01 | 622   |

Trace plots and prior posterior overlap - Population growth rate ~  $\delta^{15}N$ 







Figure A10-39: Posterior trace plot (left) and prior posterior overlap (right) for  $\beta_p$ 

#### Temporal changes in $\delta^{15}N$

#### Posterior estimates for $\beta$ parameters

The  $\beta$  parameters from Equation A10-1 represent the change in  $\delta^{15}N$  over time, at each breeding colony.



Figure A10-40: Posterior estimates for all  $\beta$  parameters for model. Black circles represent posterior medians. Thicker lines represent 50% credible intervals while thinner lines represent 95% credible intervals. Each parameter represents the change in  $\delta^{15}N$  over time at a given site.

#### Spatial differences in $\delta^{15}N$



Figure A10-41: Map of estimated colony mean  $\delta^{15}N$  values

#### Degree of regional variation in $\delta^{15}N$

Posterior chains for estimates of  $z_{site}$  parameters (site average for estimated  $\delta^{15}N$ ) were used to determine whether a regional difference in penguin diet was apparent. To account for the uncertainty in these estimates, at each iteration of the posterior chain, the site average for estimated  $\delta^{15}N$  was calculated. The Antarctic Peninsula (AP) was found to have a lower estimated  $\delta^{15}N$  than East Antarctica (EA). The distribution of differenced values does not overlap 0 (Figure A10-42), suggestion this is a robust conclusion.

Mean estimated  $\delta^{15}N$  for AP: 20.99

Mean estimated  $\delta^{15}N$  for EA: 24.637

Mean difference between  $\delta^{15}N$  values for AP and EA: 3.647



Figure A10-42: Histogram of differences in posterior chains of AP and EA  $\delta^{15}N$ 



Figure A10-43: Posterior estimates for  $\beta_{m_1}$  (SIC effect) and  $\beta_{m_2}$  (Shelf Area effect) parameters. Black circles represent posterior medians. Thicker lines represent 50% credible intervals while thinner lines represent 95% credible intervals.



Figure A10-44: Site mean predicted  $\delta^{15}N$  vs. Shelf Area



Sea Ice Concentration

Figure A10-45: Site mean predicted  $\delta^{15}N$  vs. SIC





Figure A10-46: Posterior estimate for  $\beta_p$ , the strength of the relationship between  $\delta^{15}N$  and population growth rate. Black circles represent posterior medians. Thicker lines represent 50% credible intervals while thinner lines represent 95% credible intervals.



Figure A10-47: Estimated penguin colony population growth rates plotted against mean site predicted  $\delta^{15}N$  values for each breeding colony. Error bars represent 95% credible intervals for growth rate and predicted  $\delta^{15}N$  values.