
FIGURE C.4: Prior posterior overlap for standard deviation σRi of the
Student’s t distribution for abundance for ACBR Ri.

FIGURE C.5: Prior posterior overlap for degrees of freedom νRi of the
Student’s t distribution for abundance for ACBR Ri.

C.3 Phytoplankton growth model

This document describes a version of the Community Earth System Model version 2
(CESM2) ocean ecosystem model, the Marine Biogeochemical Library (MARBL), with
four phytoplankton functional types and four zooplankton functional types (here-
inafter referred to as "4P4Z”). A thorough documentation for MARBL can be found
in [137]; the standard version of MARBL has three phytoplankton types and one zoo-
plankton. Here, trophic relationships and the parameters and equations governing
phytoplankton and zooplankton growth are described for the 4P4Z version of the
MARBL ecosystem.
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C.3.1 Phytoplankton growth equations and parameterizations

Small phytoplankton DiatomsDiazotrophsCoccolithophores
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Antarctic 
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FIGURE C.6: The new 4P4Z MARBL ecosystem configuration in CESM
with illustrations of examples of organisms falling into each functional
group. CESM components are shown in the light blue background; graz-
ing relationships implemented in the model are indicated by colored ar-
rows. Components outlined in gray show potential connections to higher

trophic levels, but are not explicitly simulated in CESM.

The four phytoplankton functional groups simulated by the 4P4Z version of MARBL
are small phytoplankton, diatoms, coccolithophores and diazotrophs (Figure C.6, top
row). The bulk of marine production comes from small phytoplankton and diatoms,
with smaller fractions from the coccolithophores, i.e., calcifying phytoplankton, and
nitrogen-fixing phytoplankton, diazotrophs. Phytoplankton growth rates (µ) are pa-
rameterized as the product of the resource-unlimited growth rate (µref ) at a reference
temperature (30◦C). Diatoms have the fastest µref , while diazotrophs have the slowest
µref (Table C.2). µref is scaled by temperature (Tlim), nutrient (Nlim), and irradiance
(Ilim) limitation terms:

µ = µrefTlimNlimIlim. (C.11)
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All phytoplankton have the same temperature limitation function, parameterized
as a Q10 (temperature coefficient) curve:

Tlim = Q10

(
T−30◦C
10◦C

)
, (C.12)

where Q10 = 1.7 in CESM2.
Light limitation (Ilim) of phytoplankton is described by the following equation orig-

inally from [77]; parameters for each phytoplankton type in the following equation can
be found in Table C.2 :

Ilim = 1− exp

(−αChlθCI

µTNlim

)
, (C.13)

where αChl is the initial slope of the chlorophyll-a specific photosynthesis-irradiance
(PI) curve and θC is the chlorophyll to carbon ratio, I is irradiance as photosynthetically
active radiation (PAR; W m−2), and Nlim is the fractional nutrient limitation term for
the most limiting nutrient (see below). Diatoms have the highest θC , which provides a
competitive advantage under low light conditions.

Nutrient limitation in CESM is represented via Michaelis-Menten uptake kinetics:

Nlim =
N

N+KN
m

(C.14)

where N represents the ambient concentration of a nutrient and KN
m is the half sat-

uration constant for that nutrient (or aqueous CO2 to represent carbon limitation in
coccolithophores; [120]). Half saturation constants for nutrient uptake for each phyto-
plankton type are listed in Table C.2. The nutrient which has the lowest Nlim is con-
sidered the most limiting and is used as the nutrient limitation term in Equation C.11.
Small phytoplankton have the lowest KN

m values, conferring a competitive advantage
under low nutrient conditions.

Phytoplankton losses include a linear mortality rate, a non-linear aggregation rate,
and grazing. Mortality and aggregation rates and formulas are shown in [137] (coc-
colithophores have the same parameters for these losses as the small phytoplanton
group), while zooplankton grazing is described in the following sections.
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Parameter Unit Definition cocco diat sp diaz
µmax d−1 Max. C-specific growth

rate
4.7 5.3 4.8 1.9

α

mmolCm2

mgChlWs

Initial slope of
photosynthesis-
irradiance curve

0.30 0.39 0.35 0.31

Θmax

mgChl

mmolN

Maximum Chl:N ratio 3.5 4.0 2.5 2.5

KFe µmol
m−3

Fe half saturation con-
stant

0.05 0.05 0.03 0.045

KPO4 mmol
m−3

PO4 half saturation con-
stant

0.006 0.05 0.01 0.015

KDOP mmol
m−3

DOP half saturation con-
stant

0.25 0.5 0.3 0.1

KNO3 mmol
m−3

NO3 half saturation con-
stant

0.41 0.4 0.2 2

KNH4 mmol
m−3

NH4 half saturation con-
stant

0.01 0.05 0.01 0.2

KSiO3 mmol
m−3

SiO3 half saturation con-
stant

n/a 1.6 n/a n/a

KCO2 mmol
m−3

CO2 half saturation con-
stant

1 n/a n/a n/a

TABLE C.2: List of relevant phytoplankton parameterizations used in
4P4Z CESM2-MARBL ecosystem. Abbreviations: Small phytoplankton
(sp), diatoms (diat), diazotrophs (diaz), coccolithophores (cocco), dis-

solved organic phosphorus (DOP).

C.3.2 Zooplankton characteristics and parameterizations

The zooplankton groups are nominally divided up by size, mortality rate (i.e., lifespan
or turnover time), and feeding preferences. While we provide some examples of what
species these groups could represent (e.g., see Figure C.6, middle row), these are not
meant to be specifically describing any particular zooplankton species in great detail.
Since this is a global model, what species each zooplankton group represents would
depend on geographic location; for instance, the macrozooplankton and mesozoo-
plankton groups could represent Antarctic krill and copepods in the Southern Ocean,
respectively. We do not, however, represent multiple life cycle stages within a group
or vertical migration behavior. Rather, this model configuration provides an estimate
of trophic energy transfer within the lower ranks of the marine food web in an Earth
System Model.

General zooplankton characteristics are shown in Table C.3. Gross growth effi-
ciency (GGE), the ratio of growth over ingestion [235], is highest at 0.35 for small
microzooplankton in the 4P4Z-MARBL; all other zooplankton groups have a GGE
of 0.25, which is within the range of observations [208]. Maximum grazing rates in-
crease as zooplankton size decreases, in line with observations [89]. Linear mortality
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rates (mort) reflect zooplankton longevity, with faster mortality rates for shorter–lived
(smaller) zooplankton groups. A non-linear, density dependent mortality term (mort2)
represents predation by organisms not explicitly simulated in the model; therefore, the
macrozooplankton group has the highest mort2 since this group is not preyed upon by
the other (smaller) zooplankton in CESM (Table C.3). Zooplankton grazing and mor-
tality rates are scaled by the same Q10 function (Equation C.12) as for phytoplankton
above, with a reference temperature (Tref ) of 30◦ and a Q10 of 1.7 (see [137] for more
details).

Parameter Unit Definition small
microzoo

microzoo mesozoo macrozoo

Maximum
grazing
rate

d−1 sum of gmax of all
prey at Tref

4.3 2.75 0.25 0.25

GGE fraction Gross growth effi-
ciency

0.35 0.25 0.25 0.25

KP mmol/m3 Range of half satu-
ration constants for
prey

1.3–1.35 1.3 0.75–1.6 0.6

mort d−1 Linear mortality
rate at Tref

0.07 0.06 0.0037 0.00125

mort2 d−1 /
(mmol/m3)

Non-linear, density
dependent mortal-
ity rate at Tref

0.0028 0.0038 0.0048 0.03

TABLE C.3: List of relevant zooplankton parameterizations used in the
4P4Z CESM2-MARBL ecosystem. Abbreviations: small microzooplank-
ton (small microzoo), microzooplankton (microzoo), mesozooplankton
(mesozoo), macrozooplankton (macrozoo), reference temperature (Tref ,

30◦), and maximum grazing rate (gmax).

C.3.3 Grazing equations and trophic relationships in 4P4Z MARBL

Prey items
Grazers
↓

sp diaz cocco diat small
microzoo

microzoo mesozoo

small
microzoo

4.0 0.3 – – – – –

microzoo 0.3 0.25 1.3 – 0.9
mesozoo – 0.9 0.2 0.8 0.04
macrozoo 0.2 0.04

TABLE C.4: Maximum grazing rates (gmax; d−1) for each grazer-prey re-
lationship in the 4P4Z MARBL. Abbreviations: Small phytoplankton (sp),
diatoms (diat), diazotrophs (diaz), coccolithophores (cocco), small micro-
zooplankton (small microzoo), microzooplankton (microzoo), mesozoo-

plankton (mesozoo), macrozooplankton (macrozoo)
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Grazing relationships are indicated in Figure C.6, as well as in Tables C.4 and
C.5. The small microzooplankton group grazes on small phytoplankton (represent-
ing microzooplankton grazing on Prochlorococcus and Synechococcus; [20]) and dia-
zotrophs (representing microzooplankton grazing on small, unicellular diazotrophs;
[232]). Grazing of small phytoplankton by small microzooplankton follows a Holling
Type III relationship following findings of [20]:

G = gmax · Tlim · Z ·
(

P 2

P 2 +K2

)
(C.15)

where gmax is the maximum grazing rate of small microzooplankton (Table C.4),
Tlim is the same Q10 function as described above for phytoplankton (Equation 1), Z
is the zooplankton concentration, P is the small phytoplankton concentration, and K
is the half-saturation constant for grazing for this relationship (see Table C.5). All the
other grazing relationships in the 4P4Z MARBL configuration are a Holling type II, or
Michaelis-Menten type (same variable definitions as for Equation C.15):

G = gmax · Tlim · Z ·
(

P

P +K

)
(C.16)

The microzooplankton group in the 4P4Z MARBL has a diverse diet consisting
of small phytoplankton, diazotrophs, coccolithophores, as well as small microzoo-
plankton (Figure C.6). The mesozooplankton diet in the model consists primarily
of diatoms, reflecting observations that diatoms serve as the dominant food source
for copepods [105]. The mesozooplankton group also grazes on coccolithophores,
diazotrophs (e.g., Trichodesmium), and microzooplankton. The macrozooplankton
group also grazes primarily on diatoms (e.g., krill grazing on diatoms; [86]), with
lower grazing rates on the mesozooplankton group. Diatoms have lower overall graz-
ing rates than other phytoplankton in the model due to protection from grazing, e.g.,
see [201]. Coccolithophores are grazed by both microzooplankton and mesozooplank-
ton, reflecting the wide size range of this group [15, 170].

Prey items
Grazers
↓

sp diaz cocco diat small
microzoo

microzoo mesozoo

small
microzoo

1.35 1.3 – – – – –

microzoo 1.3 1.3 1.3 – 1.3
mesozoo – 0.8 1.1 0.75 1.6
macrozoo 0.6 0.6

TABLE C.5: Half saturation constants for grazing (KP ; mmol m−3) for
each grazer-prey relationship in the 4P4Z MARBL. Abbreviations: Small
phytoplankton (sp), diatoms (diat), diazotrophs (diaz), coccolithophores
(cocco), small microzooplankton (small microzoo), microzooplankton
(microzoo), mesozooplankton (mesozoo), macrozooplankton (macrozoo)
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C.3.4 Model validation and further details

Model evaluation using oceanic observational databases and a complete list of pa-
rameters is archived on Zenodo: https://doi.org/10.5281/zenodo.7191370
[216].
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C.4 Age-structured simulations: Gaussian inputs

FIGURE C.7: Density plots for all four demographic parameters (by col-
umn: r, reproductive success; sjuv, juvenile survival; sad, adult survival; b,
breeding propensity). Truncated normal distributions are shown centered
about the mean values for each parameter (equal to the posterior medi-
ans from the ABC parameter estimation: µr = 0.765, µsjuv = 0.605, µsad =
0.808, µb = 0.782) with standard deviations (by row) σ = 0.001, 0.05, 0.1
In the simulation study, standard deviations for each parameter vary from
0.001 − 0.1 (with n = 15 steps); thus shown here are the minimum vari-
ation (top row), mid-range variation (middle row), and maximum varia-

tion (bottom row) for each parameter.
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FIGURE C.8: Scatter plots of breeding abundance in year t vs. each of
the four demographic parameters in year t. In each plot, the standard
deviation of the parameter of interest is high (0.1), while the standard
deviations of the other three parameters are low (0.001). Regression lines
(dark blue) and 95% confidence intervals (light blue) are shown, along
with R-squared values. *** indicates a significant correlation with p <

0.001.
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FIGURE C.9: Scatter plots of breeding abundance in year t vs. each of the
four demographic parameters in year t − 1. In each plot, the standard
deviation of the parameter of interest is high (0.1), while the standard
deviations of the other three parameters are low (0.001). Regression lines
(dark blue) and 95% confidence intervals (light blue) are shown, along
with R-squared values. *** indicates a significant correlation with p <

0.001.
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FIGURE C.10: Scatter plots of breeding abundance in year t vs. each of
the four demographic parameters in year t− 2. In each plot, the standard
deviation of the parameter of interest is high (0.1), while the standard
deviations of the other three parameters are low (0.001). Regression lines
(dark blue) and 95% confidence intervals (light blue) are shown, along
with R-squared values. *** indicates a significant correlation with p <

0.001.
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FIGURE C.11: Scatter plots of breeding abundance in year t vs. each of
the four demographic parameters in year t− 3. In each plot, the standard
deviation of the parameter of interest is high (0.1), while the standard
deviations of the other three parameters are low (0.001). Regression lines
(dark blue) and 95% confidence intervals (light blue) are shown, along
with R-squared values. *** indicates a significant correlation with p <

0.001.
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FIGURE C.12: Scatter plots of breeding abundance in year t vs. each of
the four demographic parameters in year t− 4. In each plot, the standard
deviation of the parameter of interest is high (0.1), while the standard
deviations of the other three parameters are low (0.001). Regression lines
(dark blue) and 95% confidence intervals (light blue) are shown, along
with R-squared values. *** indicates a significant correlation with p <

0.001.
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FIGURE C.13: Scatter plots of breeding abundance in year t vs. each of
the four demographic parameters in year t− 5. In each plot, the standard
deviation of the parameter of interest is high (0.1), while the standard
deviations of the other three parameters are low (0.001). Regression lines
(dark blue) and 95% confidence intervals (light blue) are shown, along
with R-squared values. *** indicates a significant correlation with p <

0.001.
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FIGURE C.14: Scatter plots of breeding population growth in year t vs.
each of the four demographic parameters in year t. In each plot, the
standard deviation of the parameter of interest is high (0.1), while the
standard deviations of the other three parameters are low (0.001). Regres-
sion lines (dark blue) and 95% confidence intervals (light blue) are shown,
along with R-squared values. *** indicates a significant correlation with

p < 0.001.
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FIGURE C.15: Scatter plots of breeding population growth in year t vs.
each of the four demographic parameters in year t − 1. In each plot, the
standard deviation of the parameter of interest is high (0.1), while the
standard deviations of the other three parameters are low (0.001). Regres-
sion lines (dark blue) and 95% confidence intervals (light blue) are shown,
along with R-squared values. *** indicates a significant correlation with

p < 0.001.
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FIGURE C.16: Scatter plots of breeding population growth in year t vs.
each of the four demographic parameters in year t − 2. In each plot, the
standard deviation of the parameter of interest is high (0.1), while the
standard deviations of the other three parameters are low (0.001). Regres-
sion lines (dark blue) and 95% confidence intervals (light blue) are shown,
along with R-squared values. *** indicates a significant correlation with

p < 0.001.
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FIGURE C.17: Scatter plots of breeding population growth in year t vs.
each of the four demographic parameters in year t − 3. In each plot, the
standard deviation of the parameter of interest is high (0.1), while the
standard deviations of the other three parameters are low (0.001). Regres-
sion lines (dark blue) and 95% confidence intervals (light blue) are shown,
along with R-squared values. *** indicates a significant correlation with

p < 0.001.
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FIGURE C.18: Scatter plots of breeding population growth in year t vs.
each of the four demographic parameters in year t − 4. In each plot, the
standard deviation of the parameter of interest is high (0.1), while the
standard deviations of the other three parameters are low (0.001). Regres-
sion lines (dark blue) and 95% confidence intervals (light blue) are shown,
along with R-squared values. *** indicates a significant correlation with

p < 0.001.
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FIGURE C.19: Scatter plots of breeding population growth in year t vs.
each of the four demographic parameters in year t − 5. In each plot, the
standard deviation of the parameter of interest is high (0.1), while the
standard deviations of the other three parameters are low (0.001). Regres-
sion lines (dark blue) and 95% confidence intervals (light blue) are shown,
along with R-squared values. *** indicates a significant correlation with

p < 0.001.
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FIGURE C.20: Scatter plots of breeding abundance vs. each of the four
demographic parameters with varied lags, with the standard deviations
of all parameters being high (0.1). Lags are as follows: 4 years for r, 3
years for sjuv, 1 year for sad, and 0 years for b. Regression lines (dark
blue) and 95% confidence intervals (light blue) are shown, along with R-
squared values. *** indicates a significant correlation with p < 0.001 while

* indicates p < 0.05.
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FIGURE C.21: Scatter plots of standard deviation in growth of breeding
abundance vs. standard deviation in each of the four demographic pa-
rameters. In each plot, the standard deviation of the parameter of interest
increases from 0.001 to 0.1 along the x-axis (with ten iterates per value of
σ), while the standard deviations of the other three parameters are con-

stant at 0.001.
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FIGURE C.22: Scatter plots of the percentage of iterates (out of m = 10)
in which the distribution for abundance was fitted to be heavy-tailed (i.e.
ν < 30) vs. the standard deviation of each of the four demographic pa-
rameters. In each plot, the standard deviation of the parameter of interest
is increasing from 0.001 − 0.1 along the x-axis, while the standard devia-

tions of the other three parameters are constant at 0.001.
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FIGURE C.23: Boxplots for the percentage of time series iterates with
heavy-tailed dynamics (ν < 30) for adult survival with low variability
(σ = 0.001, with all other parameters with either σ = 0.001 or 0.1, sam-
ple size of 8 percentages out of 10 iterates) and adult survival with high
variability (σ = 0.1, with all other parameters with either σ = 0.001 or
0.1, sample size of 8 percentages out of 10 iterates). All parameters are
drawn from Gaussian distributions. One-way ANOVA is significant with

p < 0.001.
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C.5 Age-structured simulations: Heavy-tailed inputs

FIGURE C.24: Density plots for all four demographic parameters with
heavy-tailed dynamics (by column: r, reproductive success; sjuv, juvenile
survival; sad, adult survival; b, breeding propensity). Truncated Student’s
t distributions are shown centered about the mean values for each param-
eter (equal to the posterior medians from the ABC parameter estimation:
µr = 0.765, µsjuv = 0.605, µsad = 0.808, µb = 0.782) with standard de-
viations (by row) σ = 0.001, 0.05, 0.1 In the simulation study, standard
deviations for each parameter vary from 0.001 − 0.1 (with n = 15 steps);
thus shown here are the minimum variation (top row), mid-range varia-
tion (middle row), and maximum variation (bottom row) for each param-

eter.
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FIGURE C.25: Scatter plots of breeding abundance vs. each of four demo-
graphic parameters with heavy-tailed inputs (i.e. demographic parame-
ters are varying according to a Student’s t distribution) with various lags.
Lags are as follows: 4 years for r, 3 years for sjuv, 1 year for sad, and
0 years for b. In each plot, the standard deviation of the parameter of
interest is high (0.1), while the standard deviations of the other three pa-
rameters are low (0.001). Regression lines (dark blue) and 95% confidence
intervals (light blue) are shown, along with R-squared values. *** indi-
cates a significant correlation with p < 0.001 while ** indicates p < 0.01.
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FIGURE C.26: Scatter plots of growth in breeding abundance vs. each of
four demographic parameters with heavy-tailed inputs (i.e. demographic
parameters are varying according to a Student’s t distribution) with vari-
ous lags. Lags are as follows: 4 years for r, 3 years for sjuv, 1 year for sad,
and 0 years for b. In each plot, the standard deviation of the parameter
of interest is high (0.1), while the standard deviations of the other three
parameters are low (0.001). Regression lines (dark blue) and 95% confi-
dence intervals (light blue) are shown, along with R-squared values. ***

indicates a significant correlation with p < 0.001.
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FIGURE C.27: Scatter plots of standard deviation in breeding abundance
vs. standard deviation in each of the four demographic parameters, for
heavy-tailed inputs. In each plot, the standard deviation of the parameter
of interest increases from 0.001 to 0.1 along the x-axis (with ten iterates per
value of σ), while the standard deviations of the other three parameters
are constant at 0.001. *** indicates a significant correlation with p < 0.001

while ** indicates p < 0.01.
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FIGURE C.28: Boxplots for the standard deviation of abundance across
time series for heavy-tailed demographic parameters with low variability
(σ = 0.001, sample size of 10 time series iterates) and high variability
(σ = 0.1, sample size of 10 time series iterates). One-way ANOVA is

significant with p < 0.001.
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FIGURE C.29: Boxplots for the percentage of time series iterates with
heavy-tailed dynamics (ν < 30) for adult survival with low variability
(σ = 0.001, with all other parameters with either σ = 0.001 or 0.1, sample
size of 8 percentages out of 10 iterates) and adult survival with high vari-
ability (σ = 0.1, with all other parameters with either σ = 0.001 or 0.1,
sample size of 8 percentages out of 10 iterates). All parameters are drawn
from heavy-tailed (ν = 3) Student’s t distributions. One-way ANOVA is

significant with p < 0.01.
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C.6 Age-structured simulations: Comparing Gaussian and
heavy-tailed inputs
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FIGURE C.30: Boxplots for the standard deviation of abundance across
time series for demographic parameters with high Gaussian variability
(σ = 0.1) and high heavy-tailed (ν = 3) Student’s t variability (σ = 0.1).

One-way ANOVA is significant with p < 0.01.
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Appendix D

How high interannual variability
affects the Living Planet Index:
Implications for null models

D.1 Problems arising from replacing negative simulated
abundances with missing data

Consider a simulation framework for generating fluctuating time series similar to that
described in Equation (5.5) that replaces negative simulated abundance values (see
Figure 5.1b) with missing data (i.e., each negative value is replaced with an ‘NA’ in
R). Therefore the density of the underlying datasets used in the simulations of, for ex-
ample, 1% population fluctuations and 31% population fluctuations would be vastly
different. For populations with high interannual fluctuations, the simulated time se-
ries would have far more missing values. This causes several confounding problems
in the calculation of the LPI. First, the GAM used to smooth and interpolate popula-
tion time series may now be fit with fewer data points, likely resulting in a poorer fit.
Alternatively, if the removal of negative data points results in a time series with a total
of fewer than 6 measured values, that time series will be interpolated using the chain
method (log-linear interpolation) instead of the GAM (see Section 5.1.1). Therefore,
when population time series have higher levels of interannual fluctuation, the chain
method may be used more frequently than for time series with smaller fluctuations
and, when the GAM is used to interpolate these time series, it is doing so with less
information. In addition, it is important to note that the interpolation of these miss-
ing values would only occur when calculating the LPI; thus there is no way to check
if the simulated time series are stable on average since interpolation is left to the LPI
framework.

Importantly, the decreased data density and the resulting effect on interpolation
would only occur for decreasing time series. When population fluctuations cause a
population time series to increase on average from the initial population count, the cal-
culation of the LPI would not be affected. Thus the simulated datasets resulting from
this simulation framework would be characterized by increasing time series that have
data coverage identical to that of the observed population time series and decreasing
time series that are more sparse and may be shorter on average. Additionally, since the
LPI only considers those population time series that have started but not yet ended in
any given year, decreased data density may cause many decreasing population time
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series to be removed from the LPI calculations for later years in the range considered.
This would result in a higher proportion of population time series included in the
calculation of the LPI that are increasing on average, leading to an increasing LPI.

Thus this simulation framework would not only result in similar difficulties gener-
ating a suite of time series that are actually stable on average, but it would also result
in several additional and confounding issues when calculating the LPI as a result of
the inconsistent densities of the underlying datasets. The use of any such simulation
framework would be entirely inappropriate to produce a null model for the LPI, and
any application of the LPI to datasets with varying data density should be approached
with extreme caution.

D.2 Supplementary Results
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FIGURE D.1: The LPI for fluctuating, but otherwise stable, populations
(mean and interquartile range of 100 iterations shown) drawn from a trun-
cated normal distribution. Population fluctuations are benchmarked to

the previous year’s population count (see Equation 5.6).
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FIGURE D.2: The LPI for fluctuating, but otherwise stable, populations
(mean and interquartile range of 100 iterations shown) drawn from a log-

normal distribution (see Equation 5.8).
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Appendix E

Penguindex: A biodiversity indicator
for Pygoscelis species penguins
identifies key eras of population change

E.1 Supplementary Methods

E.1.1 Bayesian state-space models

For each pygoscelid species, we fit a Bayesian state-space model, adapted from [39], to
estimate annual penguin nest abundances for each breeding population from 1970 –
2020. We modeled the intrinsic rate of growth ri,t, for the ith population in the tth season
as a function of site and season effects. As Adélie penguins are spread over a large
geographical region spanning the entirety of Antarctica, the Adélie model includes
regional effects. We separate three Adélie regions for this model, including breeding
sites on the Antarctic Peninsula (CCAMLR subarea 48.1, 48.2), Ross Sea (CCAMLR
subarea 88.1, 88.2, 88.3), or Eastern Antarctica (CCAMLR subarea 58.4.1, 58.4.2).

For the purposes of clarity we introduce our nest abundance models in a series of
steps, first modeling abundance on the arithmetic scale using the log-normal distribu-
tion. For each species, we started by modeling "true" (hereafter latent) nest abundance
zi,t at the ith breeding population (or, ‘site’) in the tth season as:

zi,t ∼ log-normal
(
µi,t = log(zi,t−1e

ri,t), σ2
)

(E.1)

where the median of the log-normal distribution, eµi,t , is a deterministic model for
discrete exponential growth, such that nest abundance zi,t is the product of nest abun-
dance in the previous season zi,t−1 and the intrinsic rate of growth, ri,t. We modeled
the intrinsic growth rate for Chinstrap penguins and Gentoo penguins as the sum of a
grand mean β, site effects ηi, and seasonal effects ϵt as:

ri,t = β + ηi + ϵt (E.2)

where each is modeled hierarchically as:

ηi ∼ N
(
0, σ2

site

)
(E.3)

ϵt ∼ N
(
0, σ2

season

)
. (E.4)
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For Adélie penguins, the intrinsic growth rate for a population in region r is modeled
as the sum of a regional mean βR[i], site effects ηi, and seasonal effects ϵR[i],t (we allow
these to differ between the three regions) as:

ri,t = βR[i] + ηi + ϵR[i],t (E.5)

where each is modeled hierarchically as:

βR ∼ N
(
0, σ2

region

)
(E.6)

ηi ∼ N
(
0, σ2

site

)
(E.7)

ϵR,t ∼ N
(
0, σ2

seasonR

)
. (E.8)

Following [39], we then introduced a term to shift these distributions to the left as a
corrective for biases that result when summing log-normal distributions [215], leading
to a mean-adjusted model for logged latent nest abundance:

log(zi,t) ∼ N
(
µi,t = log(zi,t−1) + ri,t − σ2/2, σ2

)
. (E.9)

For breeding populations whose first season of data was later than 1970, we hind-
cast nest abundances from the first census backwards to 1970. Since the exponential
growth function can be inverted, hindcasting nest abundances is functionally no dif-
ferent than forecasting nest abundances into the future or in seasons of missing data
within a site’s time series. Thus the logged latent nest abundances for the ith site from
1970 to the season of the initial count were modeled as:

log(zi,t−1) ∼ N
(
log(zi,t)− ri,t − σ2/2, σ2

)
. (E.10)

Chick counts were converted to nest counts using an estimate of reproductive suc-
cess as in [39]. Census data vary with respect to observation error, and counts were
provided by the observer(s) along with an associated accuracy score from which obser-
vation error can be estimated (see [39]). We modeled the logged observed nest counts
y recorded at the ith breeding site in the tth season as:

yi,t ∼ N
(
log(zi,t)− σ2

i,t/2, σ
2
i,t

)
(E.11)

where σ2
i,t is the observation error in the recorded count, computed from the accuracy

reported by the observer.
For each of the three species modeled, we sampled from six Markov Chain Monte

Carlo Markov chains. Each chain was initiated by assuming an initial logged nest
abundance drawn from a normal distribution with a mean of 0 and a standard de-
viation of 1,000,000. In each chain, after an adaptation phase of 3,000 iterations, the
first 300,000 iterations were discarded as burn-in. Of the remaining 100,000 iterations,
a thinning rate of 100 yielded 1,000 samples from each posterior distribution. We as-
sessed convergence through visual inspection of trace plots and using the Gelman-
Rubin diagnostic [79]. We verified that the model adequately captured the dispersion
in nest counts (measured as the sum of the squared residuals) using posterior predic-
tive checks and confirmed that the Bayesian p-value (defined as the probability that
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the simulated data were more extreme than the observed data) was indicative of a
good model fit. These analyses were performed using R v.4.0.2 [179] and JAGS (’Just
Another Gibbs Sampler’ v.4-10, [177]), interfaced using the rjags package (v.4-10,
[176]).

Full methodology, code, and results for the each state-space model can be found in
the documentation linked below:
Adélie: https://cchecastaldo.github.io/MAPPPD_adelie_models/index.
html
Chinstrap: https://cchecastaldo.github.io/MAPPPD_chinstrap_models/
index.html
Gentoo: https://cchecastaldo.github.io/MAPPPD_gentoo_models/index.
html

E.1.2 Calculating the Penguindex
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(b)(a)

FIGURE E.1: Map of Antarctica showing Adélie penguin breeding pop-
ulations that were (a) included and (b) excluded from the Penguindex

calculations, each population is colored by region.

We subset the population time series used to calculate the Penguindex as described
in the manuscript. Figures E.1-E.3 show the breeding populations that were included
and excluded from this calculation for each species. (Note, all breeding population
time series were included in the Bayesian state-space model for each species.) The
included time series were used to calculate regional, species, and global trends, which
were then converted to index values (Figure E.4).
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(b)(a)

FIGURE E.2: Map of the Antarctic Peninsula showing Chinstrap penguin
breeding populations that were (a) included and (b) excluded from the
Penguindex calculations, each population is colored by region. Insets
show (from top to bottom) the South Sandwich Islands and Balleny Is-

lands.
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(b)(a)

FIGURE E.3: Map of the Antarctic Peninsula showing Gentoo penguin
breeding populations that were (a) included and (b) excluded from the

Penguindex calculations, each population is colored by region.
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FIGURE E.4: Schematic example of the calculation of the Penguindex.
First, for each species, annual rates of change (dt) are averaged between
populations in the same region. Next, annual rates of change are aver-
aged between regions for the same species. Lastly, annual rates of change
are averaged between species. Indices are calculated from these averaged
annual rates of change similarly to the LPI framework [47, 159]. Adapted

from Extended Data Fig 2 in [174].
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E.1.3 Quantifying Gentoo growth

To compare the overwhelming growth of Gentoo penguin populations over the last
40 years to other species undergoing population growth globally, we calculated the
average percent change of each species in the public database of the most recent Liv-
ing Planet Report [139] with at least one increasing population time series. Increas-
ing populations are defined as those in which the most recent population estimate
is not the minimum estimate in the time series. Percentage change of each popu-
lation was calculated from the year of the minimum population size for the time
series until the most recent population estimate as in [125]. These were then av-
eraged for each increasing population time series to obtain a single percent change
for each species in the database with increasing an population, amounting to 3894
species. We then obtain an empirical cumulative distribution function (ECDF) from
this sample of percentage changes. The same process for calculating an average per-
centage change was also completed for the Gentoo penguin observations from the
population time series used to calculate the Penguindex (49 increasing population
time series, each with at least two observations between 1980-2019). We then calcu-
late the percentile of the Gentoo percentage change from the ECDF obtained from
the previous step. Results of the analysis of Living Planet Database species are in-
cluded, with average percentage change along with the number of population time
series used and the start and end years for each species are available via Zenodo:
https://doi.org/10.5281/zenodo.7573439.

E.1.4 Population time series for inclusion in the LPI

We have provided all MAPPPD pygoscelid population observations in the format re-
quired for integration into the LPI [159]. We have unified the location names to be
consistent with MAPPPD and have eliminated duplicate time series for some loca-
tions. In contrast to other species in the LPI that may have multiple time series for each
location, this database contains exactly one time series for each colony in Antarctica,
which represents the sum total of all publicly available data on a colony through time.
Though the details of data collection may vary (e.g., direct ground counts vs. counts
from UAV photographs, the composition of the survey team, etc.), all time series in the
database represent the number of breeding pairs through time. These LPI-ready data
are available via Zenodo: https://doi.org/10.5281/zenodo.7573439.
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E.2 Supplementary Results

Global Pygoscelis Penguindex 1980 1985.8 1996.1 2015 2019

Global Adélie Penguindex 1980 1986.5 1990.3 2005 2009.8 2019

Global Chinstrap Penguindex 1980 1983.3 1985.2 1991 1995.7 2012.8 2014 2019

Global Gentoo Penguindex 1980 2001 2014.7 2019

Adélie Penguindex Region 1 1980 1985.1 2006.1 2014.9 2019

Adélie Penguindex Region 2 1980 1982.5 1987.2 1999 2003.1 2019

Adélie Penguindex Region 3 1980 1986.3 1991.6 1994.7 2004 2019

Adélie Penguindex Region 4 1980 1997.5 2019

Adélie Penguindex Region 5 1980 1986.7 1990 2019

Adélie Penguindex Region 6 1980 1988.7 2006.3 2019

Adélie Penguindex Region 7 1980 1996 2004 2010.5 2012.1 2014.2 2019

Adélie Penguindex Region 8 1980 1988 1994.7 2004 2009.3 2019

Chinstrap Penguindex Region 1 1980 1985 1991.4 2015.2 2019

Chinstrap Penguindex Region 2 1980 1983.5 1989 1996.2 2010.2 2019

Chinstrap Penguindex Region 3 1980 1983 1985.9 1990.5 1996.4 2009 2019

Chinstrap Penguindex Region 5 1980 1985.7 1998.1 2012.7 2014.1 2019

Gentoo Penguindex Region 1 1980 2000.9 2015 2019

Gentoo Penguindex Region 3 1980 2006.5 2019

Gentoo Penguindex Region 4 1980 2000 2005.4 2019

TABLE E.1: Identified eras of change (defined by change points between
1980-2019) for global Pygoscelis, species-level, and region-level indices.

200



FIGURE E.5: Region-level Penguindex for Adélie penguins shown on a
map of the Antarctic, including all breeding population sites used for in-
dex calculation. For each index plot, the black line denotes the mean, the
white lines the 95% credible intervals, and the gray lines each iteration.

Each blue line denotes the null model index.
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FIGURE E.6: Region-level Penguindex for Chinstrap penguins shown on
a map of the Antarctic Peninsula, including breeding population sites
used for index calculation. One breeding site in Region 2 (Peter I Island,
Southwest AP) is not pictured on the map. Excluded is the index plot for
the two Chinstrap breeding populations in Region 5 (Ross Sea). For each
index plot, the black line denotes the mean, the white lines the 95% credi-
ble intervals, and the gray lines each iteration. Each blue line denotes the

null model index.
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FIGURE E.7: Region-level Penguindex for Gentoo penguins shown on a
map of the Antarctic Peninsula, including all breeding population sites
used for index calculation. For each index plot, the black line denotes the
mean, the white lines the 95% credible intervals, and the gray lines each

iteration. Each blue line denotes the null model index.
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