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FIGURE 6.3: Region-level Penguindex for Regions 1-5 for (a-e) Adélie, (f-
i) Chinstrap, and (j-l) Gentoo penguin populations from 1980-2019. Each
black line denotes the mean, the white lines the 95% credible intervals,
and the gray lines each iteration. Each blue line denotes the null model

index. Identified change points are reported in Appendix S2: Table S1.
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populations from 1980-2019. (Chinstrap and Gentoo penguin populations
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white lines the 95% credible intervals, and the gray lines each iteration.
Each blue line denotes the null model index. Identified change points are

reported in Appendix S2: Table S1.

initial period of growth. Most of this decline occurred between 1992-1995 (1992 index

0.985, 95% CI 0.662-1.413; 1995 index 0.598, 95% CI 0.409-0.853), while recent declines

have been slower. The average Adélie population on the Central- and Northwest AP

(14 populations; Region 1, Figure 6.3a) declined by 75.7% (95% CI = 67.3-82.3%) of
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baseline by 2007 following a small amount of initial growth. In later years, Adélie

populations on the Central- and Northwest AP were more stable on average (2019

index 0.235, 95% CI = 0.149-0.358; null model index 1.079).

For Adélie populations on the Southwestern AP (9 populations; Region 2, Figure

6.3b), two short periods of initial growth—first rapid until 1983 (1983 index 1.159, 95%

CI 0.670-01.861) and then slow between 1983-1987 (1987 index 1.170, 95% CI 0.628-

1.976)—were followed by three longer periods of slow decline—1987-1999 (1999 in-

dex 0.978, 95% CI 0.485-1.759), 1999-2003 (2003 index 0.822, 95% CI 0.455-1.320), and

2003-2019 (2019 index 0.570, 95% CI = 0.299-1.023; null model index 1.145). On the

Northeastern AP (7 populations; Region 4, Figure 6.3d), Adélie populations increased

steadily until 1998, by 74.4% (95% CI = 19.3% decrease - 254.2% increase) on aver-

age. Between 1998 and 2019, however, these Adélie penguin populations decreased

just as steadily (2019 index 1.034, 95% CI = 0.382-2.219; null model index 1.064). The

Bellingshausen Sea (Region 6, Figure 6.4a) had only one Adélie penguin population

and contributed little to the global Adélie Penguindex.

Regional Chinstrap trends

The majority of Chinstrap breeding populations were located in Elephant Island, the

South Orkney Islands, and the South Shetland Islands (60 populations; Region 3, Fig-

ure 6.3h). On average, these populations declined by 74.4% (95% CI = 81.0-66.7%)

between 1980-2019. Prior to 1986, however, these populations increased on average

by 31.5% (95% CI = 7.8-59.1%). After 1986, these populations declined at various rates

until 2009 (2009 index 0.324, 95% CI = 0.256-0.411), after which populations remained

relatively stable until 2019 (2019 index 0.256, 95% CI = 0.256-0.411). On average, Chin-

strap populations on the Central- and Northwestern AP (31 populations; Region 1,

Figure 6.3f) declined by only 30.9% (95% CI = 0.6-52.8%). Compared to Elephant Is-

land, the South Orkney Islands, and the South Shetland Islands, Chinstrap popula-

tions on the Central- and Northwestern AP displayed a much steeper period of growth
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prior to 1985, more than doubling the 1980 baseline on average (1985 index 2.12, 95%

CI = 1.41-3.00). Chinstrap populations in this region declined after this initial period

of growth, first quickly until 1991 (1991 index 0.768, 95% CI = 0.612-0.961) and then

slowly from 1991-2005 (2005 index 1.193, 95% CI = 0.786-1.754). The Southwestern

AP (Region 2, Figure 6.3g) and Ross Sea (Region 5, Figure 6.3i) each had two or fewer

Chinstrap penguin populations and contributed little to the global Chinstrap Penguin-

dex. Null models for all regional-level Chinstrap indices were stable at 1.0.

Regional Gentoo trends

Gentoo penguin populations on the Central- and Northwestern AP (39 populations;

Region 1, Figure 6.3j) increased on average over 10-fold (2019 index 11.529, 95% CI =

8.362-15.482). Initial growth was slow until 2001 (2001 index 3.622, 95% CI = 2.584-

4.983), then steeper between 2001 and 2015 (2015 index 12.343, 95% CI 9.090-16.094).

The growth of these populations, however, stalled between 2015-2019. Growth was

relatively steady for Gentoo breeding populations on Elephant, South Orkney, and

South Shetland Islands (Region 3, Figure 6.3k), with the average population increas-

ing by 287.6% (95% CI = 195.2-664.2%) by 2019. On the Northeastern AP (Region 4,

Figure 6.3l), Gentoo penguin populations increased 17-fold on average (2019 index

17.050, 95% CI = 3.094-51.692). With only 4 Gentoo penguin populations, this region

contributed relatively little to the global Gentoo Penguindex. Null models for all three

regional-level Gentoo penguin indices were stable at 1.0.

6.4 Discussion

To our knowledge, this is the first comprehensive examination of genus-wide trends

for Pygoscelis penguins across the whole of the Antarctic. Our results identify key eras
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of global change for the average pygoscelid breeding population. While the dom-

inant approach to Antarctic monitoring strategies has been to model overall popula-

tion abundance [39, 53], the LPI framework used here instead aims to measure average

trends in populations. Since region-level Penguindex calculations equally weight all

populations within a region regardless of their size, our index is different from one

calculated by aggregating populations at larger scales. Thus the trends described here

by a region-level Penguindex are not commensurate with the trends observed for the

total abundance of that species across the region (i.e., as in [39], Fig 2). For example, a

region-level Penguindex for a species can be interpreted as describing the average per-

centage increase or decrease in any given population’s abundance within that region,

enabling trends in all populations to be reflected in the index rather than being dom-

inated by the largest population. We see the Penguindex and the LPI framework as a

complement to ongoing efforts to model aggregated abundance across the Antarctic.

6.4.1 Stark differences in individual species trends

Over the last four decades, our time series suggest an average decline of 21% within

Chinstrap penguin populations across the Antarctic. While data is sparse, studies up

to the 1990s found many Chinstrap populations to be increasing [73, 106, 185], with

evidence of this growth dating back to the mid 1950s [52]. For example, [52] note a

five-fold increase at North Point (S. Orkney Islands) between 1958 and 1978. However,

more recent studies have established global declines in Chinstrap populations [143,

169, 194, 210]. Our global Chinstrap Penguindex quantifies both this initial period of

Chinstrap population growth and its subsequent crash.

In stark contrast to the grim global trend of Chinstrap populations, however, Gen-

too penguin populations have skyrocketed, with our global Gentoo Penguindex sug-

gesting that the average population more than doubled between 1980 and 2019. In

fact, an analysis of the public LPR database [139] reveals that the growth observed
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for Gentoo penguins is in the top 89th percentile for species undergoing population

growth (see Appendix S1: Section S3). The regional trends observed here also align

with previous studies showing that Gentoo populations along the Western AP have

experienced the most rapid growth [95].

Compared to the overwhelming decline of Chinstrap populations and staggering

growth of Gentoo populations, Adélie penguin populations across the Antarctic have

experienced little change on average over the 40 years considered here. Even within

an initial era of growth identified between 1980-1986, the average Adélie population

never grew to more than 5.8% of the 1980 baseline, and went on to decline back to

this baseline by 2019. Regional Adélie trends differ markedly, with declines in Adélie

populations across the AP and sub-Antarctic islands being offset by increases in pop-

ulations in the Ross Sea and Eastern Antarctica. These trends are similar to those iden-

tified by the first (and only) global Adélie penguin census, conducted in 2014 [141].

6.4.2 Notable eras of population change may be linked to warming

While Adélie populations on the Western AP and sub-Antarctic islands (Elephant,

South Orkney, and South Shetland Islands) decreased drastically between 1980-2019,

each constituent region was identified as having a recent distinct era of change in

which declines slowed significantly. These eras each started roughly between 2003-

2006 and extended until the end of our study period (2019). This recent leveling of

decline among Adélie populations is perhaps related to the shift between a long pe-

riod of steady warming to a recent period of cooling (beginning circa 1999) identified

by Turner et al. [226, 229], with a lag roughly consistent with the time necessary for a

shift in either reproductive success or juvenile survival to affect breeding abundance

[218]. Adélie penguins have a tight-knit coupling to Antarctic sea ice [16, 73, 237] that

has been the subject of considerable research over the last 40 years, though the relative

roles of climate and Antarctic krill fishing as drivers of Adélie trends on the Peninsula
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remain subject to debate. Our findings are consistent with, though not conclusive of,

climatically-driven forcings playing a key role in the observed and much discussed

declines of Adélie penguins in this region.

While, on average, the 2019 abundance of Adélie populations on the Northeastern

AP was nearly identical to the 1980 abundance, our data suggest that these popula-

tions were not stable over the 40 year time series considered here [27]. We identified

a clear era of growth between 1980-1998 followed by an era of decline (1998-2019).

Thus the period of warming across the AP prior to 1999 [226, 229] was correlated

with growth of Adélie populations on the Northeastern AP, in contrast to the decline

seen on the Western AP and sub-Antarctic islands. Additionally, the period of cooling

observed across the AP after 1999 was met with declines in these Northeastern AP

populations. These trends may indicate that the sea ice concentration in the Weddell

Sea was unfavorably high at the start of our time series in 1980, and that the warming

period prior to 1999 benefited Adélies until the region began to cool again.

Our species-level index for Gentoo penguins also suggests a recent period of rel-

ative stagnation in the growth of the average population, with a distinct period of

stability identified between 2015-2019. While we have been unable to identify any

promising potential environmental drivers for this halt in growth of Gentoo popula-

tions, it is clear that recent years have marked a new era for this species.

6.4.3 Global Pygoscelis trends are dominated by different species

over time

Species-level pygoscelid penguin trends were equally weighted to obtain the global

Pygoscelis Penguindex. Four distinct eras of global pygoscelid trends were identified,

beginning with a period of growth across Antarctica for all species (1980-1986). Be-

tween 1986 and 1996, growth in the average Gentoo population was balanced with the
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decline in the average Adélie and Chinstrap populations, resulting in virtually com-

plete stagnation in the global Pygoscelis Penguindex across this era. For the next two

decades, from 1996-2015, growth in Gentoo populations outweighed the declines in

Adélie and Chinstrap populations, as illustrated by a steadily rising global Pygoscelis

Penguindex. As discussed above, recent years have seen a halt of growth in Gentoo

penguin populations. This change point was identified in the global pygoscelid index

as well, with the recent era between 2015-2019 demonstrating a global decline in the

Penguindex as stable Gentoo populations were eclipsed by continuing, albeit gradual,

declines in Adélie and Chinstrap populations.

While changes in the global Penguindex are driven by different species through

time, it is important to note that both Adélie and Chinstrap penguins outnumber Gen-

too penguins almost ten-fold across the Antarctic [95, 141, 210]. Thus the Penguindex

provides information that is complementary, but not equivalent, to changes in overall

penguin abundance. Instead, the Penguindex reflects average population change on a

percentage basis by treating species trends equally regardless of the species population

size, as described above.

6.4.4 Benefits of state-space models and the Penguindex approach

State-space models (SSMs) similar to the one employed here are valuable in their abil-

ity to synthesize data collected by different methods or with different precision by in-

corporating observation error into their estimation of trends [39, 114, 129, 174]. Here,

the use of our hierarchical Bayesian SSMs also allowed for a more informed model-

ing approach than is provided by a generalized additive model (GAM) like the one

employed by the LPI for interpolation [47, 159]. In the traditional LPI framework, a

GAM not only interpolates missing data but also smooths time series, reducing inter-

annual variation and affecting the resulting index. As Pygoscelis penguin time series

display considerable interannual fluctuations [39, 218, 240], preserving this variability
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is important to understanding their dynamics and producing an accurate index of py-

goscelid biodiversity. As an aggregation of species population trends, the traditional

LPI can mask variation in the underlying data. By maintaining empirical interannual

variation with the use of our SSMs and including species-specific indices to aid in-

terpretation, the reflection of different species trends in the Penguindex can help to

illustrate underlying environmental changes happening in the Antarctic. SSMs also

allow for the incorporation of covariates or spatial autocorrelation to improve inter-

polation of missing data, which stand as future improvements to the Penguindex and

the underlying SSMs.

The traditional LPI framework has several other shortcomings that we mitigate in

the formulation of the Penguindex. First, the LPI is sensitive to random fluctuations

in underlying population time series [32], leading to shifting a counterfactual rather

than a fixed baseline set at 1980. The null models utilized in the Penguindex address

this issue by allowing for a null expectation of the index that is robust to large popu-

lation fluctuations. While most null model indices are fairly static, some (particularly

for Adélies in Regions 1-3, see Figure 6.3) demonstrate an increasing counterfactual

rather than a constant standard equal to the 1980 index. Additionally, the use of the

geometric mean in the standard LPI means it is often sensitive to extremes. While

the aggregation of the Penguindex does not weight population time series based on

their size, and thus may still be sensitive to the influence of small populations, our

region-level indices, showing underlying regional trends, and use of credible inter-

vals, illustrating the variation in each index, aid in the determination of global and

species-wide trends.

6.4.5 Updating the LPI for Antarctica and expanding the Penguindex

Pygoscelis penguins and the Southern Ocean ecosystem are extremely underrepre-

sented in the database underlying the LPI and the biennial LPR. Though MAPPPD has
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identified 271 Adélie, 358 Chinstrap, and 109 Gentoo penguin breeding populations

across the Antarctic, the Living Planet database currently includes only 76 Adélie, 18

Chinstrap, and 66 Gentoo time series. Through our analysis we have aggregated and

adapted all MAPPPD pygoscelid penguin abundance observations into the format re-

quired for integration into the LPI [159] (see Appendix S1: Section S4). The inclusion of

all MAPPPD Pygoscelis time series will drastically increase the data coverage for these

Antarctic sentinels and our work provides a starting point for more comprehensive

Antarctic coverage in the LPI.

Here we have started with the three Antarctic penguin species with the greatest

data coverage. Ongoing efforts to track Emperor penguins using satellite imagery

will greatly expand data availability for this species of conservation concern, and

we consider the incorporation of these data into the Penguindex—and, further, the

LPI—as a top priority. In addition, King and Macaroni penguins were recently added

to MAPPPD. While these two species have relatively few populations in this region

and the time series are particularly short and/or sparse, we expect that the Penguin-

dex can be expanded to include them in the near future. Finally, penguins are only one

small component of Antarctic biodiversity. As time series are collated for other species

of long-standing research interest (e.g., pack-ice seals, petrels, fur seals, whales; [26, 28,

82, 195]), their full incorporation into the LPI will allow for a straight-forward assess-

ment of biodiversity trends by a wide range of stakeholders.
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Appendix A

Difficulties in summing log-normal
distributions for abundance and
potential solutions

A.1 Supplementary Methods

FIGURE A.1: Parameter values used in the simulation study and global
bird abundance study. Log-normal parameter values µ and σ used in
both the simulation study and the re-analysis of Callaghan et al.’s global

bird abundance data.
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FIGURE A.2: Reconstructed global species abundance distribution for
global bird abundance. The global species abundance distribution, cal-
culated using the median of each species’ simulated abundance distribu-
tion (each a log-normal distribution) for the re-analysis of the global bird
abundance data. A constant 1 is added for species predicted to have zero
abundance. Reproduction of Fig 2A in Callaghan et al. (shown on the

same scale, log10).
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FIGURE A.3: Examples of reconstructed species’ simulated abundance
distributions for global bird abundance study. Species shown, from top to
bottom: Ring-billed Gull; Green Heron; Northern Wheatear; Ashy Prinia;
Osprey; Acorn Woodpecker; Yellow-tailed Black-Cockatoo; and Midget
Flowerpecker. Reproduction of Fig 2B in Callaghan et al. (shown on the

same scale, log10, in millions).
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A.2 Derivation of linearity of difference in global abun-
dance estimates

Consider n = {10, 100, 1000} i.i.d. log-normally distributed populations N1, N2, ..., Nn

each satisfying log(Nit) ∼ N(µ, σ2). Let the D be equal to the logged-difference be-
tween the median of the posterior for the aggregate sum of populations and the sum
of the individual population medians. Then

D = log(M − S), (A.1)

where M is the median of the posterior for N = N1 +N2 + ...+Nn, the aggregate sum
of populations and S is the sum of the individual medians of each population.

The sum of n i.i.d. log-normal random variables N has no closed form probabil-
ity density function. However, the Fenton-Wilkinson (FW) approximation produces a
commonly used estimate for the PDF of N [67]. According to the FW approximation
[46], N can be approximated by a log-normal PDF with parameters µN and σ2

N such
that

σ2
N =

log(eσ
2−1)

n
+ 1, (A.2)

µN = log(neµ) +
1

2
(σ2 − σ2

N). (A.3)

Thus the median of N is given approximated by

M = med(N) ≈ log(neµ) + 1
2
(σ2 − σ2

N)

eσ
2
N/2

(A.4)

=
log(neµ) + 1

2
(σ2 − ( 1

n
log(eσ

2−1) + 1))

e(
1
n
log(eσ

2−1)+1)/2
(A.5)

=
log(n) + log(eµ) + 1

2
(σ2 − ( 1

n
log(eσ

2−1) + 1))

e(
1
n
log(eσ2−1)+1)/2

(A.6)

=
log(n) + µ+ 1

2
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n
log(eσ
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e(
1
n
log(eσ
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(A.7)

=
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e(
1
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+
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2
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e(
1
n
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. (A.8)

Setting a = log(n) + 1
2
(σ2 − ( 1

n
log(eσ

2−1) + 1)) and b = e(
1
n
log(eσ

2−1)+1)/2, A.8 reduces to

M ≈ 1

b
µ+

a

b
. (A.9)
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Since the median of each log-normally distributed population Ni is equal to eµ, the
value of S can be found easily:

S =
n∑

i=1

med(Ni)

=
n∑

i=1

eµ

= neµ. (A.10)

Thus A.1 becomes

D = log

(
1

b
µ+

a

b
− neµ

)
. (A.11)

Differentiating with respect to µ yields

dD

dµ
=

1
b
− neµ

µ
b
+ a

b
− neµ

(A.12)

≈ 1, (A.13)

since the eµ terms dominate all others in A.12 for sufficiently large values of µ.

A.3 How Bayesians interpret the tail of the skewed dis-
tributions

For simplicity, we limited our manuscript’s discussion on the mechanics of summing
distributions for population abundance. However, it is also worth reflecting on our
interpretation of the posterior distribution and, specifically, on the interpretation of
the log-normal distribution’s long right tail. One interpretation of this long right tail
is that such abundances are infrequent and thus including them in the aggregate sum
(at the appropriately small probability) is appropriate. A more Bayesian interpreta-
tion would be that such tail events are not infrequent but are instead unlikely to be true
(in the "degree-of-belief" sense), in which case they should not be included in the ag-
gregate total. While extreme outcomes (i.e. those in the right tail of the distribution)
are by nature rare, the probability of drawing at least one extremely large abundance
when summing across posteriors can be quite high, and eventually inevitable (as il-
lustrated in Fig 1C in the main text), meaning the aggregate abundance will almost
certainly include at least one very large draw, and thus will be larger than antici-
pated by the central tendencies of the individual populations. The interpretation of
the Bayesian posterior in this context deserves discussion but falls outside the scope
of our manuscript, which was written for an audience of conservation practitioners.
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A.4 Summing negative binomial distributions

Consider a collection of n = {10, 100, 1000} independent and identically negative
binomially-distributed populations of animals, each with an abundance that is mod-
eled as Ni,t ∼ NB(µ, k) where µ is the mean of abundance, varying between 2,000 and
160,000, and k is the overdispersion ("size") parameter, fixed at 4. (The overdisper-
sion parameter measures the amount of clustering, or aggregation, or heterogeneity
in the data: a smaller k means more heterogeneity; when k = 0, the NB distribu-
tion is equivalent to the Possion distribution.) Each population consists of m = 1000
negative binomially-distributed draws. If an estimate for the total abundance across
all of these populations (the "regional" abundance) is sought, then the distribution of
interest, that of the regional abundance, is thus the sum of many log-normal distribu-
tions. We first consider the choice of summary statistic for a single negative binomial
distribution, and then consider the differences between methods of summing across
multiple distributions. Similar to that of the log-normal distribution, the mean of a
negative binomial random variable is pulled toward the extreme values of the distri-
bution’s long right tail and, as a result, the mean is always larger than the median (Fig
A.4).

FIGURE A.4: Negative binomial distribution for abundance with µ =
20, 000 and k = 2.

We now consider summing across multiple populations whose abundances are
described each by a negative binomial distribution. Unlike the case of the log-normal
distribution, the probability generating function of the sum of n negative binomial
random variables is known in closed form. The sum S = X1 + X2 + ... + Xn where
each Xi follows the negative binomial distribution has been shown to be a mixture
binomial random variable [41, 74]. However, we show in Fig A.5 that sums of negative
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FIGURE A.5: The distribution of m = 1000 sums of NB-distributed abun-
dance samples across n = 1000 independent populations. Each NB-
distributed population has mean abundance µ = 4000 and overdispersion
parameter k = 2. The values of the sum of the medians, median of sums,
and mean of sums (which is equal to the sum of the means) are shown.

binomial random variables behave similarly to those of log-normal random variables
when the median is used as the measure of central tendency. If the median is used as a
point estimate of abundance, it follows that either the median of the sums or the sum
of the medians represents the best estimate of the aggregate abundance. However,
since the median of sums is not the sum of medians, these two methods give different
estimates for total abundance across the region, with the latter approach (sum-then-
summarize, giving the median of the sums) yielding a significantly larger estimate of
total abundance than former (summarize-then-sum, giving the sum of the medians),
as shown in Fig A.6. This phenomenon is similar to that described for the log-normal
distribution.
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FIGURE A.6: The logged difference in global abundance estimates for n =
{10, 100, 1000} i.i.d. negative binomial-distributed populations is plotted
against the mean abundance µ. Solid lines represent the mean of each set
of 10 ensembles. For each simulation, we draw m = 1000 samples for
each population and calculate the difference between the median of the
sample-wise aggregated regional population and the sum of the empirical

population medians.
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Appendix B

Heavy-tailed distributions in animal
population modeling

B.1 Heavy-tailed distributions for Adélie penguin abun-
dance
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FIGURE B.1: Skewness-kurtosis plot for empirical Adélie abundance data
on the linear scale (Nt+1

Nt
), including values for 1000 bootstrap samples.

Values are also given for several common distributions.
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Distribution Parameter Estimate Standard error

Normal
mean

sd

0.015
0.309

0.020
0.014

Student’s t †

mu

sigma

df

-0.001
0.175
2.542

0.011
0.012
0.401

Logistic
location

scale

0.002
0.154

0.013
0.007

Cauchy
location

scale

-0.001
0.126

0.010
0.009

Gumbel *
mu

sigma

-0.120
0.278

0.015
0.010

TABLE B.1: Estimates and standard errors for each parameter for the dis-
tributions in Table 3.2 fitted to empirical Adélie penguin abundance be-
tween 1970-2019 (log(Nt+1

Nt
)). †The nonstandard Student’s t distribution,

with mean µ, standard deviation σ, and degrees of freedom ν, is fit here
(it is defined for use in R by the ggdist package [112]). *The Gumbel
distribution is defined for use in R by the VGAM package [238]. All other

distributions are defined in Base R.

Distribution Parameter Estimate Standard error

Log-normal
meanlog

sdlog

0.012
0.289

0.018
0.013

Gamma
shape

rate

10.192
9.580

0.897
0.864

Weibull
shape

scale

2.276
1.189

0.082
0.035

Log-logistic **
shape

scale

6.514
1.002

0.288
0.013

Burr **
shape1

shape2

rate

0.560
8.376
1.113

0.071
0.603
0.027

TABLE B.2: Estimates and standard errors for each parameter for the dis-
tributions in Table 3.1 fitted to empirical Adélie penguin abundance be-
tween 1970-2019 (Nt+1

Nt
). **The log-logistic and Burr distributions are de-

fined for use in R by the actuar package [66]. All other distributions are
defined in Base R.
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B.2 Fitting heavy-tailed distributions in JAGS

B.2.1 Table 3.4 Supplementary Results

Distribution Parameter MLE Estimate MLE Standard Error

Logistic
µ = 1

s = 2

0.99
1.96

0.99
0.77

Student’s t
(Standard)

ν = 5 5.08 5.15

Student’s t
µ = 1

σ = 0.5

ν = 5

0.98
0.51
5.07

0.98
0.51
5.24

Gamma
α = 5

β = 2

4.92
1.93

4.92
1.93

Weibull
k = 1.5

λ = 1

1.52
0.99

1.52
1.00

TABLE B.3: Estimates and standard errors for each parameter using MLE
(using the fitdistrplus package in R [61]), as compared to true pa-

rameter values, for the distributions in Table 3.4.

0 2000 4000 6000 8000

0.
6

0.
8

1.
0

1.
2

1.
4

Iteration

V
al

ue

Trace − mu

0 2000 4000 6000 8000

0.
6

0.
8

1.
0

1.
2

1.
4

0.6 0.8 1.0 1.2 1.4

0
1

2
3

Parameter estimate

D
en

si
ty

Density − mu

0.6 0.8 1.0 1.2 1.4

0
1

2
3

0 2000 4000 6000 8000

0.
74

0.
78

0.
82

Iteration

V
al

ue

Trace − s

0 2000 4000 6000 8000

0.
74

0.
78

0.
82

0.74 0.76 0.78 0.80 0.82

0
10

20
30

40

Parameter estimate

D
en

si
ty

Density − s

0.74 0.76 0.78 0.80 0.82

0
10

20
30

40

FIGURE B.2: Trace plots and posterior distributions for the JAGS built-in
logistic distribution model (see Table 3.4).
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FIGURE B.3: Trace plots and posterior distributions for the JAGS logistic
distribution model using the zeros trick (see Table 3.4).
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FIGURE B.4: Trace plots and posterior distributions for the JAGS logistic
distribution model using the ones trick (see Table 3.4).
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FIGURE B.5: Trace plots and posterior distributions for the JAGS built-
in Student’s t distribution model (see Table 3.4). Data simulated using a

standard Student’s t distribution (defined in Base R).

0 2000 4000 6000 8000

4
5

6
7

8
9

Iteration

V
al

ue

Trace − df

0 2000 4000 6000 8000

4
5

6
7

8
9

4 5 6 7 8 9

0.
0

0.
2

0.
4

0.
6

Parameter estimate

D
en

si
ty

Density − df

4 5 6 7 8 9

0.
0

0.
2

0.
4

0.
6

FIGURE B.6: Trace plots and posterior distributions for the JAGS Stu-
dent’s t distribution model using the zeros trick (see Table 3.4). Data sim-

ulated using a standard Student’s t distribution (defined in Base R).
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FIGURE B.7: Trace plots and posterior distributions for the JAGS Stu-
dent’s t distribution model using the ones trick (see Table 3.4). Data sim-

ulated using a standard Student’s t distribution (defined in Base R).
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FIGURE B.8: Trace plots and posterior distributions for the JAGS built-
in Student’s t distribution model (see Table 3.4). Data simulated using a
nonstandard Student’s t distribution (defined in the R package ggdist

[112]).
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FIGURE B.9: Trace plots and posterior distributions for the JAGS built-in
Gamma distribution model (see Table 3.4).
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FIGURE B.10: Trace plots and posterior distributions for the JAGS Gamma
distribution model using the zeros trick (see Table 3.4).
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FIGURE B.11: Trace plots and posterior distributions for the JAGS Gamma
distribution model using the ones trick (see Table 3.4).
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FIGURE B.12: Trace plots and posterior distributions for the JAGS built-in
Weibull distribution model (see Table 3.4).
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FIGURE B.13: Trace plots and posterior distributions for the JAGS Weibull
distribution model using the zeros trick (see Table 3.4).
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FIGURE B.14: Trace plots and posterior distributions for the JAGS Weibull
distribution model using the ones trick (see Table 3.4).

157



B.2.2 Table 3.5 Supplementary Results

N Parameter MLE Estimate MLE Standard Error

1000
k = 1.5

λ = 1

1.52
0.99

0.037
0.022

500
k = 1.5

λ = 1

1.53
0.98

0.053
0.030

100
k = 1.5

λ = 1

1.41
0.92

0.111
0.069

50
k = 1.5

λ = 1

1.60
0.98

0.169
0.092

TABLE B.4: Estimates and standard errors for each parameter using MLE
(using the fitdistrplus package in R [61]), as compared to true pa-

rameter values, for the fitted Weibull distributions in Table 3.5.
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FIGURE B.15: Trace plots and posterior distributions for the JAGS built-in
Weibull distribution model, fitting a dataset of size N = 500 (see Table

3.5).
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FIGURE B.16: Trace plots and posterior distributions for the JAGS Weibull
distribution model using the zeros trick, fitting a dataset of size N = 500

(see Table 3.5).
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FIGURE B.17: Trace plots and posterior distributions for the JAGS Weibull
distribution model using the ones trick, fitting a dataset of size N = 500

(see Table 3.5).
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FIGURE B.18: Trace plots and posterior distributions for the JAGS built-in
Weibull distribution model, fitting a dataset of size N = 100 (see Table

3.5).
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FIGURE B.19: Trace plots and posterior distributions for the JAGS Weibull
distribution model using the zeros trick, fitting a dataset of size N = 100

(see Table 3.5).
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FIGURE B.20: Trace plots and posterior distributions for the JAGS Weibull
distribution model using the ones trick, fitting a dataset of size N = 100

(see Table 3.5).
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FIGURE B.21: Trace plots and posterior distributions for the JAGS built-in
Weibull distribution model, fitting a dataset of size N = 50 (see Table 3.5).
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FIGURE B.22: Trace plots and posterior distributions for the JAGS Weibull
distribution model using the zeros trick, fitting a dataset of size N = 50

(see Table 3.5).
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FIGURE B.23: Trace plots and posterior distributions for the JAGS Weibull
distribution model using the ones trick, fitting a dataset of size N = 50

(see Table 3.5).
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Appendix C

Variability, skipped breeding, and
heavy-tailed dynamics in an Antarctic
seabird

C.1 Approximate Bayesian computation

FIGURE C.1: ABC-simulated time series shown with the observed time
series for Cape Crozier from 1985 to 2018. Simulated time series are ac-
cepted (shown in blue) or rejected (shown in faint gray) based on mean

absolute percentage error from observed time series.
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FIGURE C.2: Histograms of accepted values for demographic parameters
in the ABC parameter estimation, shown with their priors (blue).

C.2 Bayesian population model

C.2.1 Model description

We used a Bayesian state-space model to estimate annual Adélie nest abundances for
all 271 known Adélie breeding sites from 1970 – 2020. We model the intrinsic rate
of growth ri for the ith site as only the region-specific mean γR[i]. Regions are dic-
tated by the Antarctic Conservation Biogeographic Regions, as determined by [219].
We purposefully avoided additional covariates as to create a simplistic default model
whose predictive ability could be compared to that of more biologically nuanced pro-
cess models.

C.2.2 Antarctic Conservation Biogeographic Regions

Adélie penguin colony sites were grouped into the following ACBRs [219] (listed here
with the number of sites and number of total site/year observations in each):

1. North-east Antarctic Peninsula (6 sites, 12 total observations)

2. South Orkney Islands (22 sites, 73 total observations)

3. Northwest Antarctic Peninsula (80 sites, 481 total observations)

4. Central South Antarctic Peninsula (2 sites, 4 total observations)

5. Enderby Land (27 sites, 192 total observations)

6. Dronning Maud Land (0 sites)

7. East Antarctica (32 sites, 58 total observations)
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8. North Victoria Land (28 sites, 217 total observations)

9. South Victoria Land (10 sites, 199 total observations)

10. Transantarctic Mountains (0 sites)

11. Ellsworth Mountains (0 sites)

12. Marie Byrd Land (7 sites, 10 total observations)

13. Adélie Land (13 sites, 40 total observations)

14. Ellsworth Land (7 sites, 9 total observations)

15. South Antarctic Peninsula (1 site, 1 observation)

16. Prince Charles Mountains (26 sites, 55 total observations)

Observation errors

Counts were provided by the observer(s) as the nest or chick count y along with an
associated accuracy score (which we convert to measurement error) such that y repre-
sented a draw from a distribution:

[y|lz, σ2
o ], (C.1)

centered on the "true", or latent, count lz whose dispersion was controlled by σ2
o , which

represented the uncertainty in the count due to measurement imprecision. The accu-
racy scores were selected from a 4 point scale that penguin census counters tradition-
ally use to represent count precision [52]. The precision for the 5th category was deter-
mined from highly uncertain nest abundance estimates derived from satellite imagery
[141]. Table C.1 shows the reported accuracy categories and their confidence intervals.

Reported accuracy Reported 95% confidence interval
1 (95, 105)
2 (90, 110)
3 (75, 125)
4 (50, 150)
5 (20, 500)

TABLE C.1: Reported accuracy categories and their confidence intervals.
For each category, if 100 nests was the true count then the 95% confi-
dence intervals for each accuracy category’s distribution was defined as

described here.

We used the log-normal distribution to model the observation process, as all counts
must be positive. However, the confidence intervals (with the exception of category 5)
were symmetric around the true count and did not correspond to the skewed credible
intervals generated by the log-normal distribution. To compute the appropriate scale
parameters for each accuracy category, we defined a function that output the squared
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deviations between the upper and lower confidence interval (Table C.1) and the 0.975
and 0.025 quantiles from the cumulative density function for a log-normal distribution
whose median was 100. We then used the optim function to select the scale parameter
σo that minimized the sums of squares for each accuracy category.

Abundance process models

Nest abundance
For the purpose of clarity we build our nest abundance model in a series of steps,

first modeling abundance on the arithmetic scale using the log-normal distribution.
We then introduce a term to shift these distributions to the left as a corrective for bi-
ases that result when summing log-normal distributions, a step we explain more fully
below. Finally, we re-express this model using logged abundance modeled normally
and briefly discuss its equivalence to modeling abundance log-normally. Adopting the
bracket notation from [78] for assigning group membership (for example, R[35] = 2
means that the 35th unit in the data (i = 35) is from region 2), we start by modeling
"true" (hereafter latent) nest abundance zi,t at the ith breeding site located in region R[i]
in the tth season as:

log(zi,t) ∼ student-t(µi,t = log(zi,t−1e
ri), σ2

R[i], νR[i]), (C.2)

where the mean of the Student’s t distribution, µi,t, is a deterministic model for discrete
exponential growth, such that nest abundance zi,t is the product of nest abundance in
the previous season zi,t−1 at the site and the intrinsic rate of growth, ri. We model the
intrinsic growth rate as just the regional mean γR[i] (without site effects or seasonal
effects):

ri = γR[i], (C.3)

where gamma is modeled hierarchically as:

γR[i] ∼ normal(0, σ2
region) (C.4)

In Equation C.2, σ2
R[i] represents process error, or the variation in logged latent nest

abundance due to unmodeled biotic or abiotic processes not captured by the simple
growth model embedded as the distribution’s median.

Chick abundance
We modeled the latent chick abundance zci,t at the ith breeding site in the tth season

as:

zci,t ∼ binomial(Ni,t, αi,t) (C.5)

Ni,t = 2× round(elzi,t) (C.6)
αi,t ∼ beta(a = 1.875, b = 1.125). (C.7)

Pygoscelid penguins typically produce one chick per nest (the maximum number of
chicks per nest is two), although breeding success can fluctuate considerably between
sites and seasons. We use the well-informed priors µ = 0.5, σ2 = 0.0625 for αi,t,
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the proportion of chicks produced at the ith site in the tth season, to reflect observed
variation in breeding success due to environmental and demographic stochasticity.
Note that, when moment-matched, these priors result in a and b in Equation C.7.

Initial season abundance
We modeled the logged latent nest abundance at the ith site (for the first season nest

abundance was recorded, t = Ii) as:

lzi,t−1 ∼ normal(lzi,t − γR[i], σ
2
R[i]

) (C.8)

This method of hindcasting was possible because the exponential growth function
can be inverted, making hindcasting nest abundances functionally no different than
forecasting nest abundances into the future or in seasons of missing data within a site’s
time series. For sites whose first season of data was 1970, hindcasting was unnecessary.

Observation process models

We modeled the logged observed nest counts yns and chick counts ycs recorded at the
ith breeding site in the tth season as:

yni,t
∼ normal(lzi,t, σ2

ni,t
) (C.9)

yci,t ∼ normal(lzi,t, σ2
ci,t

) (C.10)

where σ2
ni,t

and σ2
ci,t

are the observation errors in the recorded nest and chick count,
respectively. These errors are computed from the accuracy ratings reported by the ob-
server, the details of which are outlined in Section C.2.1. Here we model observations
being drawn from a log-normal distribution whose median is lzi,t, as over- and under-
counts are equally likely. Note that sites can have both nest and chick counts in the
same season.
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C.2.3 Results

FIGURE C.3: Model summary tables for mean growth rate (γRi), standard
deviation (σRi), and degrees of freedom (νRi) of the Student’s t distribu-

tion for abundance for ACBR Ri.
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