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Abstract of the Dissertation

Modeling Population Dynamics and Capturing Variability in Antarctic Penguins

by

Emma J. Talis

Doctor of Philosophy

in

Applied Mathematics & Statistics
(Computational Biology)

Stony Brook University

2023

The Antarctic continent and surrounding Southern Ocean have been undergoing
some of the fastest rates of warming on Earth. Penguins of the genus Pygoscelis are
considered the bellwether sentinels of the Southern Ocean ecosystem on account of
their sensitivity to changes in the environment. However, the extreme environmental
conditions and logistical challenges of Antarctic research make data scarce on these
three critical species, with penguin population time series being patchy at best, and
nonexistent at worst. To understand how Antarctic penguin populations are chang-
ing, and thus, how climate change and other anthropogenic factors are affecting this
globally important ecosystem, we must formulate accurate mathematical models for
Pygoscelis penguin dynamics that accommodate their extreme stochasticity and de-
velop methods for assessing their continent-wide trends.

In this dissertation, we first illustrate the difficulties in summing multiple log-
normal distributions, which are often used to model animal abundance. This work
was motivated by and illustrated using a recent study of global avian abundance; we
find that the challenges are most acute when uncertainty is high, as is the case in
many Pygoscelis time series. Next, we use the Adélie penguin (Pygoscelis adeliae) as
a case study to show how empirical distributions for animal abundance may exhibit
heavy-tailed dynamics. Using an age-structured model, we identify the causes of such
heavy-tailed dynamics and link them to spatial patterns in Adélie food resource vari-
ability. We also quantify the impacts of demographic stochasticity, including skipped
breeding, on simulated Adélie penguin time series to determine the mechanistic ori-
gins of the extreme variability observed in empirical Pygoscelis spp. time series. Ad-
ditionally, we investigate potential null models for the Living Planet Index (LPI), a
global biodiversity indicator, highlighting the effects of high interannual variability in
population time series, like that observed for Pygoscelis penguins, on the index and
associated null models. Lastly, we develop a Pygoscelis penguin-specific biodiversity
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index, the ’Penguindex,’ using the framework of the LPI, distilling 40-year popula-
tion trends of Pygoscelis spp. penguins for the first time into a single, Antarctic-wide
indicator for use by policymakers.
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Chapter 1

Introduction

1.1 Antarctic penguins as sentinels of climate change

Increasingly, evidence has shown that ecosystems in the Southern Ocean are facing

significant challenges with global implications [42, 186]. The Antarctic has undergone

some of the fastest rates of warming on Earth [118, 156, 228, 227], with loss of sea ice

and ocean acidification representing just two of the many associated consequences.

The extreme environmental conditions of Antarctica beget a widespread scarcity of

data throughout this critical region. Almost all of the Antarctic’s terrestrial biodiver-

sity exists in permanently ice-free areas that cover less than 1% of the continent’s area

[127]. However, most of these ice-free areas are difficult to access and, with very few

long-term research stations on the continent [115, 202], sampling is generally restricted

to the short summer months when travel to the Antarctic is most feasible. Thus data

about Antarctic ecosystems, including animal abundance and distribution, are tem-

porally, spatially, and taxonomically restricted. This paucity of data makes it difficult

to track environmental changes in the Antarctic, including those related to climate

change in addition to other anthropogenic influences including fishing, other resource

exploitation, and invasive species, parasites, and diseases.

The genus Pygoscelis consists of three species of Antarctic penguins, Adélies (P.

adeliae), Chinstraps (P. antarctica), and Gentoos (P. papua). Pygoscelis penguins are in-

fluential predators in the Southern Ocean ecosystem and are considered the bellwether
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sentinels of the ocean on account of their sensitivity to changes in the environment [4,

25]. These penguins spend nine months of the year dispersed across the Antarctic,

foraging on krill, crustaceans, or fish [45, 221]. As colonial breeders, Pygoscelis pen-

guins congregate in densely-packed breeding colonies, consisting of up to hundreds

of thousands of individuals [4], during the summer months [204]. Pygoscelis spp. pen-

guins, especially Adélies, are highly site-faithful (or, ’philopatric’), returning to the

same breeding colony (and even the same nest) year after year [6, 7]; though individ-

uals may skip breeding in a given year in certain conditions [24, 98].

The colonial nature of their breeding during the austral summer makes Pygoscelis

spp. penguins easier to monitor than most other species of Antarctic terrestrial or

marine life. However, the logistical challenges of visiting the Antarctic still mar the

ability of researchers to track these critical penguin species. Each species has hun-

dreds of distinct breeding colony locations, spread across the sub-Antarctic islands

and Antarctic Peninsula (all three spp.) and the entire coast of Antarctica (Adélie pen-

guins). Though remote sensing methods have begun to show promise in monitor-

ing Pygoscelis penguin abundance, most breeding abundance observations are ground

counts, necessitating a team of researchers to visit each breeding site. Since visiting

each breeding colony annually to hand-count penguin nests is infeasible, time series

for Pygoscelis penguin abundance are patchy in both space and time. To understand

how Antarctic penguin populations are changing, and thus, how climate change and

other anthropogenic factors are affecting this globally important ecosystem, we must

therefore formulate accurate mathematical models for Pygoscelis penguin dynamics.

State-space models (SSMs) are one way of addressing some of these issues, allowing

for the hindcasting, interpolation, and forecasting of animal abundance from these

sparse time series [43, 114].

2



1.2 The classic modeling framework for animal popula-

tion dynamics

Ecologists widely consider the population abundance of a single animal species to be

log-normally distributed since populations grow multiplicatively [62, 87, 117]. MacArthur

[146] first quantified this argument intuitively in 1960: assuming that the population

growth rate of a species, with an abundance at time t of Nt and per individual growth

rate of rt, could be represented by the ordinary differential equation (ODE)

dNt

dt
= rtNt. (1.1)

This ODE integrates to

log(Nt) = log(N0) +

∫ t

0

rtdt (1.2)

(here and throughout we adopt the ecological notation, where log refers to the natural

logarithm, ln). MacArthur [146] argued that, since environmental factors might cause

rt to vary randomly over time, an application of the Central Limit Theorem would

result in
∫ t

0
rtdt, and thus log(Nt), being normally distributed. Dennis and Patil [62]

recast this traditional multiplicative growth model as a stochastic differential equation

to show that the log-normal distribution can be used as a model of a population with

an environmental carrying capacity, not just a population undergoing unbounded ex-

ponential growth. Though there exist many other models for animal population dy-

namics, today the log-normal distribution is often used as the de facto model for pop-

ulation abundance [87]—a universal descriptor of abundance particularly when more

detailed information is unavailable for a species.
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SSMs are hierarchical models popularly used to model population dynamics, an-

imal movement, and capture–recapture data [14, 43, 152]. SSMs are very flexible, al-

lowing the natural variation in ecological processes to be modeled separately from any

error associated with the observation process. The classic SSM for time series models

of animal abundance involves these two main components: a process model, describing

how the true abundance changes through time, and an observation model, describing

the effect of sampling and any error associated with the measurement of true abun-

dance [43]. By modeling the two sources of variability directly and individually, SSMs

allow for the critical distinction between biological and demographic stochasticity and

the error resulting from the sampling methodology, yielding more accurate analyses

of ecological time series.

A simple process model for abundance in year t (Nt) would be

log(Nt) = log(Nt−1) + r + ϵ, ϵ ∼ N(0, σ2
proc), (1.3)

with annual growth rate r, following directly from Equation (1.2), and ϵ representing

the stochastic variation on the growth rate, frequently referred to as the "process error".

This process model is often represented in the equivalent form

log(Nt) ∼ N(log(Nt−1e
r), σ2

proc). (1.4)

Equivalently, this can be rewritten on the linear scale using a log-normal distribution:

Nt ∼ log-normal(Nt−1e
r, σ2

proc). (1.5)

Layered on top of this model for the true abundance is usually a model for the

observation or measurement process, wherein the observed abundance Yt is related to

the true abundance Nt. The simplest and most commonly used model for observation
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error is

log(Yt) = log(Yt−1) + ω, ω ∼ N(0, τ 2obs), (1.6)

where ω represents the observation error and τ 2 represents the error variance. The

use of the log-normal distribution to model the observation process often stems from

observation errors being recorded as a percentage (e.g., ±5%) of the counted abun-

dance, a feature that can be closely approximated for reasonably small variances by

the log-normal distribution.

Thus, models featuring either or both process and observation error lead to log-

normally distributed abundance. The log-normal distribution has several advantages

for modeling abundances, including its restriction to non-negative values and—unlike

other strictly non-negative distributions such as the Poisson—the ability to tune the

variance parameter to accommodate both under- and over-dispersion [131]. This log-

normal framework has been used in SSMs describing the abundance (or, in other ap-

plications, the density or movement) of countless animal species [92, 152, 165, 174,

184], including Pygoscelis penguins in particular [39].

1.3 Capturing variability in Antarctic penguin time se-

ries

In addition to the data paucity brought on by the complicated logistics of Antarctic re-

search, the population time series of Pygoscelis spp. penguins are also characterized by

large interannual variability [39, 111, 240]. Ecologists have had challenges linking this

population variability to environmental drivers, with existing studies only explaining

a small percentage of these fluctuations to variables like sea ice concentration and sea

surface temperature [40, 104]. Though the process error of an SSM can be adjusted
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to accommodate increased interannual variability, such extreme unexplained stochas-

ticity can make accurately modeling population time series difficult, hampering the

ability to predict trends through time [23, 191].

In its simplest formulation, the modeling of population dynamics focuses on to-

tal abundance; however, ecologists often subdivide the population according to age,

sex, or breeding status. In an age-structured model, a population is made up of in-

dividuals, distinguished by age, sexual maturity, or some other physical characteris-

tic, and is assumed to evolve such that the structure of the population with respect

to those individuals at a given time completely determines the population dynam-

ics [1]. By explicitly representing biologically-meaningful transitions between states

(e.g., survival and reproduction), such age-structured models can clarify which mech-

anistic and demographic drivers are responding to environmental conditions and in-

fluencing overall of population trends. Additionally, environmental information can

be added to age-structured models to link trends to environmental variability. Since

many colonially-breeding seabirds, including Pygoscelis penguins, are long-lived and

display measurable population structure characterized by delayed sexual maturity,

age-structured models provide a method to reveal relationships between demographic

rates and population abundance and the associated variability [97, 107, 224].

The care needed to accurately analyze ecological time series for individual species,

especially in the face of all the complexity involved, is often too demanding for pol-

icymakers who must make large-scale management decisions. In the Antarctic, the

pipeline for making policy decisions is especially complicated, with a consensus-based

governing framework controlled by the Antarctic Treaty Parties that incorporates guid-

ance from the Scientific Committee on Antarctic Research (SCAR) and includes aux-

iliary policy-making bodies such as the Convention on the Conservation of Antarc-

tic Marine Living Resources (CCAMLR). The (currently 56) nations that make up the

Antarctic Treaty Parties regulate international relations, scientific cooperation, tourism,
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conservation, and other Antarctic matters [196]. Now more than ever, it is critically im-

portant that these regulatory bodies can be presented with clear and concise descrip-

tions of ecosystem trends, as CCAMLR continues the decades-long planning and im-

plementation process for its Marine Protected Areas (MPAs) [22, 164] and the Antarctic

Treaty Parties contend with both the increasing threats from climate change and the

growing pressures of tourism.

To simplify the complexity of animal population dynamics, indices of ecosystem

health—like the World Wildlife Fund’s Living Planet Index (LPI) [8], the International

Union for Conservation of Nature’s Red List Index [230], and many others [33]—con-

solidate data from population time series into a single value or trendline to help pol-

icymakers understand how ecosystems are changing and what conservation efforts

are needed. The LPI, a global biodiversity indicator for vertebrate species, has been

adopted by the Conservation on Biological Diversity (CBD) [50, 51] as a metric to mea-

sure progress to the 2011 Aichi Biodiversity targets and the 2022 Kunming-Montreal

Global Biodiversity Framework in addition to a myriad of other international policy

documents [126]. However, the LPI, like most other indicators for global ecosystem

change, has a data-scarcity problem that is perhaps most glaring for the Antarctic.

The paucity of data available for Pygoscelis penguins in particular is exacerbated in

the LPI, since the Antarctic research community has not made a strong effort to inte-

grate these data into the databases underlying such biodiversity indicators. Therefore,

there is currently no such easily-interpreted metric for ecosystem health and diversity

available for use by Antarctic policymakers to make urgently important management

decisions for this globally significant region.
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1.4 Structure of the dissertation

The main focus of this dissertation is the development of more accurate methods for

modeling and assessing the population dynamics of Antarctic penguins, with a par-

ticular focus on capturing the interannual variability in observed time series for abun-

dance. The structure of the dissertation is as follows. Chapter 2 reviews the statistical

issues involved in summing multiple log-normal distributions, often used to model

animal abundance, and evaluates some alternative formulations that might be consid-

ered, particularly when abundance is estimated over multiple populations. Chapter

3 focuses on the possibility of heavy-tailed dynamics in Pygoscelis penguin popula-

tion time series, focusing on Adélie penguins as a case study and identifying the best-

fitting distribution for observed abundance before illustrating how a suite of candidate

distributions can be modeled in a Bayesian state-space framework using JAGS (’Just

Another Gibbs Sampler’, [177]). Chapter 4 quantifies the impacts of demographic

rates, including skipped breeding, on time series of Adélie penguin abundance sim-

ulated using an age-structured model, identifies the cause of heavy-tailed dynamics

in simulated Adélie time series and, lastly, links these heavy-tailed dynamics to spa-

tial patterns in Adélie food resource variability. Chapter 5 focuses on developing ac-

curate null models for the LPI global biodiversity indicator, highlighting the effects

of high interannual variability in population time series on the index and associated

null models. Chapter 6 introduces a Pygoscelis penguin-specific biodiversity index,

the ’Penguindex,’ using the framework of the LPI, distilling 40-year population trends

of Pygoscelis spp. penguins for the first time into a single global indicator for use by

policymakers.
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Chapter 2

Difficulties in summing log-normal

distributions for abundance and

potential solutions

2.1 Introduction

Log-normal distributions arise frequently in ecology and conservation, often as a means

of modeling animal abundance and its attendant uncertainty, but their long right tails

can make them difficult to use correctly. If the abundance of animal species is modeled

by a log-normal distribution then the aggregate abundance across multiple popula-

tions (which could represent different populations of the same species or populations

of different species) follows a distribution reflected by the sum of log-normal distri-

butions. Unfortunately, unlike the normal or Poisson distributions, the log-normal

distribution is not closed under addition; that is, the sum of log-normal distributions

is not itself log-normally distributed. In fact, the sum of log-normal distributions does

not follow a known probability distribution at all, and finding a closed form solu-

tion for the probability density function for the distribution of sums of log-normals

is still an active area of mathematical research [19, 63, 67, 135]. Even more seriously,

the median of the sum of log-normal distributions is not the sum of the medians of

the constituent distributions. Because the median is the measure of central tendency
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commonly used as a point estimate for skewed distributions, ecologists lack simple or

well-known solutions for modeling animal abundance across multiple populations.

2.1.1 Use of the log-normal distribution in ecology and the modeling

of animal abundance

Here we focus on the use of log-normal distributions in the modeling of animal abun-

dance, using as a framework the classic description provided by Clark and Bjornstad

[43] and subsequently developed by other authors [3, 60, 100]. The log-normal dis-

tribution has several advantages for modeling abundances, including its restriction

to non-negative values and—unlike other strictly non-negative distributions such as

the Poisson—the ability to tune the variance parameter separately from the mean, and

thus to accommodate both under- and over-dispersion with respect to the mean. Thus

the continuous log-normal distribution is often preferred to other distributions, in-

cluding discrete distributions, to model the discrete variable of animal abundance.

Two common scenarios leading to the use of log-normal distributions for abundance

are models including normally-distributed random variation on growth rate (“pro-

cess noise," which represents actual variability of the phenomenon of abundance) and

models incorporating log-normally distributed observation error (representing the un-

certainty in abundance estimates on account of the method in which estimates are

determined). While these two sources of random variation are frequently included

together in models of population dynamics [34, 43] [96, pp. 73-76 and 242-244], either

one in isolation is sufficient to yield a distribution for abundance that is log-normal.

It is important to note, however, that our investigation of this issue is agnostic to the

method by which a statistical distribution modeling abundance has been derived.

There are many contexts in which ecologists might want to sum populations across

multiple spatial or taxonomic units for the purposes of estimating a point estimate of

abundance at larger scales. Most directly, a species may breed in spatially distinct
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populations, as is common with seabirds, and an estimate of abundance or population

trend may require summing these populations [39, 200]. Both metapopulation ecology

[90, 91] and landscape demography [85] are concerned with the aggregated dynamics

and persistence of spatially distinct populations. In conservation planning, it is a long-

standing debate whether it is better to have a single large or several small reserves (the

so called SLOSS debate, see [133, 173]), the comparison of which requires some way

of summing populations across units. Moreover, ecologists are increasingly looking

towards a portfolio approach to conservation, with due consideration for abundance

and extinction risk across an ensemble of populations (e.g. [99]). Careful accounting

of global abundance could also play an important role for assessment of a species

for the International Union for Conservation of Nature Red List, for the designation

of Important Bird Areas, or for protection under the US Endangered Species Act. It is

important to note that here we focus on applications in which the total across two units

should unambiguously equal the sum of the two units taken separately. Notably, the

spatial scaling of species richness is not such a case, because species may be common to

several units and the total richness (gamma diversity) is not simply the mathematical

sum of the richness within each unit (alpha diversity). While analogous concerns may

arise in this case as well, here we restrict our attention to the simplest scenario of

summing quantities (such as the number of individual organisms) that are unique to

each unit.

In its most general form, we will frame our analysis as follows: Consider a col-

lection of different populations, each with abundance modeled by a log-normal dis-

tribution, representing the strictly positive number of animals (X > 0) within some

spatial domain in which the animal is present. Here, we use the word ‘population’ to

represent the smallest collection of individuals for which an abundance is estimated.

While our analysis applies easily to other scenarios, in the context of our motivating

case study [35] each population represents a different species and the aim is to esti-

mate total abundance across all the species. For simplicity, we will refer to this as the
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‘global abundance’. We use the standard parameterization of the log-normal distribu-

tion X ∼ Lognormal(µ, σ2), where µ and σ represent the mean and standard deviation

of the natural logarithm of the random variable (i.e, the abundance of one species),

loge(X). On the linear scale, the expected value (or mean) of abundance is given by

eµ+
σ2

2 , its median by eµ, and its standard deviation by
√
(eσ2 − 1)e2µ+σ2 .

Estimates for abundance at larger scales should be consistent with the sum of es-

timates at smaller scales. In the absence of such scale-consistency, our inference be-

comes sensitive to the scale over which the assessment is made. This leads to a global

abundance estimate that no longer corresponds to the individual abundances of each

species, or estimates over a larger spatial scale that no longer corresponds to abun-

dances within its constituent components.

2.1.2 Summing log-normal distributions

The global abundance across multiple species might be estimated in one of two ways,

depending on whether the distributions are summarized or summed first. Here and

throughout, we use ‘summarize’ to describe the process of obtaining a point estimate

of abundance from a distribution while ‘summing’ abundance indicates we are math-

ematically adding together abundance estimates (in this case, across multiple species)

to obtain an estimate of global abundance. As we will see below, the estimate of global

abundance obtained by summing abundances may be an entire distribution, incorpo-

rating the attendant uncertainty in global abundance, or simply a point estimate.

First, one could summarize each species’ abundance distribution to yield a species-

specific point estimate to be added to the other point estimates. While unavoidable in

contexts where only point estimates are available for each species, this approach pre-

cludes the propagation of uncertainty inherent to each individual species’ estimates

to the uncertainty appropriate to the aggregate. Alternatively, one could sum samples

12



from the individual abundance distributions and then summarize the resulting distri-

bution to derive a point estimate for global abundance. In this way, the uncertainty of

each individual species’ abundance estimate propagates to the uncertainty in global

abundance and a point estimate for global abundance can be easily obtained.

At first glance, this second method offers a deceptively straightforward solution to

error propagation, involving nothing more than the addition of several distributions

for the purposes of arriving at a distribution representing their sum. (As we illustrate

in the next section, however, this approach is neither straightforward nor a solution.)

While some would argue that the final distribution for abundance is sufficient and, in

fact, superior to any measure of central tendency of that distribution, there are many

contexts in which a point estimate for abundance is required. In such cases, there are

several measures of central tendency that might be used for this purpose. Unlike the

normal distribution, which is symmetric, the log-normal distribution is right-skewed,

with a long right tail that pulls the mean to the right of the median. Because the mean,

median, and mode are identical for the normal distribution, in practice the choice of

the most appropriate statistic of central tendency is often irrelevant. For skewed dis-

tributions such as the log-normal, however, these three measures can be sharply di-

vergent (Figure 2.1a).

While rarely discussed explicitly, implicit in the structure of many population mod-

els using the log-normal distribution is the assumption that eµ represents the best es-

timate of true abundance [48, 187, 212]. There are several modeling techniques that

allow for the distribution used for modeling abundance to be summarized by the

point estimate eµ. One method is to simply model abundance as a log-normally dis-

tributed variable and use the median (eµ) as the point estimate (e.g.[172]). As it is

often loge(abundance) that is the response variable being modeled, it is common to

back-transform the mean of the normal distribution for loge(abundance), µ, to serve

as a point estimate of abundance on the original (linear) scale as eµ (e.g.[3]). Another

approach, described by Hilborn and Mangel [96, pp. 73-76 and 242-244] and popular
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(c)

FIGURE 2.1: (a) The mean of the log-normal distribution is pulled right by
the long right tail as compared to the median. (b) The distribution of sums
of log-normally distributed abundance samples across 1,000 populations
each distributed according to (a). The median of this distribution of sums
is much larger than the sum of the medians of each individual population,
since samples from log-normal distributions will include extreme values
from the right-hand tails (circled pink in (c)). (c) This situation is illus-
trated with 4 populations and 11 samples from the distribution for each

population.
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in the fisheries literature [153, 162, 163, 211, 220, 233] involves taking the mean of the

shifted log-normal distribution, Lognormal(µ − σ2/2, σ2), exploiting the fact that the

expected value of this distribution is eµ−σ2/2+σ2/2 = eµ. While these approaches yield

equivalent point estimates for the true abundance for a single population, the situation

becomes more complex when summing abundance distributions together.

2.1.3 The median of the sums is not the sum of the medians

As described above, a popular approach for summing multiple log-normal distribu-

tions is to simply sum samples from the individual distribution (i.e., each individ-

ual log-normal distribution modeling one species’ abundance). An extension of the

median as the measure of central tendency for each individual species uses the me-

dian of this derived quantity as the best estimate of global abundance. However, the

entirety of the distribution for global abundance obtained by summing the samples

from the individual species’ distributions is larger than the sum of the medians of the

constituent log-normal distributions (Figure 2.1b). Since the probability of the sum

including an anomalously large value from the tail of one of the log-normal distribu-

tions (Figure 2.1c) grows as the number of species being summed increases, so does

the difference between these two methods of estimating global abundance. As a re-

sult, summing abundances as a derived quantity for each draw from the distribution

leads to an estimate larger than would have been obtained by summarizing the indi-

vidual distributions for each population before summing. This distribution, derived

from the sum across species, is not log-normally distributed (in fact, it has no well-

described parametric form) and, being centered around the sum of the means of the

constituent log-normal distributions, is uniformly too large to represent a reasonable

global species sum.

Thus a simple sum of samples drawn from the constituent distributions yields a re-

sulting distribution for global abundance that is too large, with no standard measures
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of central tendency reflecting the sum of point estimates for the individual populations

involved. For these reasons, we argue that the distribution for global abundance ob-

tained by summing draws from the individual abundance distributions is as a whole

unreasonable, having been pulled right by the long right tail of the constituent log-

normal distributions. Nonetheless, practitioners summing across samples from the

individual species-level distributions may not realize that the resulting quantity takes

a distribution with unknown properties and moments that no longer reflect the true

global abundance. We focus here on illustrating the difficulties inherent in summing

log-normal distributions first using a pared down simulation study from which we

can explore the conditions under which these challenges are most acute and, secondly,

using a more concrete motivating example drawn from a recently published estimate

of global avian abundance.

2.2 Simulation study: The extent of the problem

2.2.1 Summing independent and identical log-normal distributions

To demonstrate the complications inherent to summing log-normal distributions, we

first considered a collection of n = {10, 100, 1000} populations of animals. Each of

these populations’ abundance was modeled as loge(N) ∼ N(µ, σ2), where µ is the

logged-median abundance and σ = 0.20 is the standard deviation on the loge scale.

Thus the n log-normal distributions each modeling an individual population’s abun-

dance are identical and independent with these parameters. We performed a suite of

such simulations, with each simulation using a different value of µ for all n log-normal

distributions. The range of µ values used, 2 ≤ µ ≤ 12, represents both small (e2 ≈ 7 in-

dividuals) and large (e12 ≈ 163, 000 individuals) populations. Setting σ = 0.20 yielded

log-normal distributions each with an uncertainty of roughly −35% to +50% (taking

the geometric mean, this is roughly ±40%). Each individual abundance distribution
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FIGURE 2.2: The logged difference in global abundance estimates (i.e., be-
tween the sum of the medians of the individual population abundances
and the median of the distribution of summed of log-normal populations)
for 10, 100, and 1,000 populations modeled using identical and indepen-
dent log-normal distributions is plotted against the logged-median abun-
dance µ. Solid lines represent the mean of the set of 10 iterations for each

value of n.

consisted of 1, 000 random draws (i.e., realizations from the log-normal distribution).

Following the reasoning above, we adopted the sum of medians of each population as

the most direct reflection of global abundance and calculated the difference between

this estimate of global abundance and that obtained by summing samples across pop-

ulations to obtain a distribution of sums which is then summarized using the median.

For each value of n, this difference was calculated 10 times for each value of µ and

the mean difference was calculated over all 10 iterations. We found that the natural

logarithm of this difference between the median of the distribution of sums for global

abundance and the sum of the medians of individual populations grew linearly with
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increasing logged-median abundance µ (Figure 2.2; see Appendix A.2 for mathemati-

cal derivation of linearity) and was larger for increasing numbers of populations. This

difference grew sharply with increasing σ and was greater than 10% with highly un-

certain abundances (not shown).

2.2.2 Summing correlated identical log-normal distributions

We next considered the case were individual populations were modeled using log-

normal distributions that were identical but not independent. As above, we calculated

the difference between the global abundance estimates. 100 related populations were

modeled using identical multivariate log-normal distributions with µ = 6 and σ =

0.2 and varying correlation coefficient (0 − 1). This simulation was repeated for 100

iterations. As may be expected, the difference between the median of the distribution

for global abundance (i.e., the distribution of sums) and the sum of the medians of

individual populations shrunk as the correlation among populations increased (Figure

2.3). There was no difference between these two metrics when the populations were

modeled by perfectly correlated log-normal distributions; in this extreme situation,

the population collapsed to a single population with abundance modeled by a single

log-normal distribution.
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2.2.3 Summing independent and non-identical log-normal distribu-

tions

Lastly, we considered the case of summing non-identical log-normal distributions to

understand the extent of the difference between the sum of the medians of the con-

stituent distributions and the median of the distribution of sums when the individual

log-normal distributions differ in mean and uncertainty. Specifically, we examined

the case in which medium-sized populations known with reasonably high precision

(µ1 = 10, median abundance eµ1 ≈ 22, 000, σ1 = 0.1) are combined with large pop-

ulations estimated with low precision (µ2 = 12, median abundance eµ2 ≈ 160, 000,

σ2 = 0.4). We calculated the difference between the median of the global abundance

distribution and the sum of the medians of each population’s abundance distribution
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for different numbers (n1 = 1, ..., 25 and n2 = 1, ..., 25) of these different sized popula-

tions. We found that the percent difference in global population abundance estimates

was more severe if the populations being summed were modeled using log-normal

distributions that were not identical than compared to the case where the distribu-

tions were identical and independent (Figure 2.4). Further, the inclusion of more pop-

ulations with high uncertainty caused the largest percent difference.
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2.3 Global bird abundance study: A motivating example

We next used the dataset presented in the analysis of global bird abundance by Callaghan

et al. [35] to illustrate these same ideas using a real dataset with significant conserva-

tion potential [147, 148, 158]. In the original study, the abundance of 9,700 individual

bird species, each represented by a probability distribution, were summed to gener-

ate a distribution (and ultimately, a point estimate) representing global avian abun-

dance [35]. In the context of this principal motivating example, we identified alterna-

tive models for species-level abundances yielding a distribution for global abundance

closer to the value of the sum of the medians rather than the median of the sums. In

this way, we obtained a scale-consistent estimate for global abundance, one that more

closely aligned with the sum of the abundance estimates for each individual species

(i.e., the sum of medians or, equivalently,
∑

i e
µi) and captured the nature of the un-

certainty for each species as well. It is worth noting that our use of the Callaghan et

al. [35] data is not intended as a criticism of the original paper per se but simply offers

an opportunity to illustrate a much more general issue in conservation biology using

a dataset that is both recent and conservation relevant.

2.3.1 Reconstruction of Callaghan et al. data

In Callaghan et al. [35], the authors provide abundance estimates for each bird species

summarized by the median and lower and upper bounds of the 95% CIs on

log10(Abundance), which are assumed to be normally distributed (see Methods and

Dataset S1 of Callaghan et al. [35]). We used the standard deviation for these normal

distributions,

(log10(lower limit) + log10(upper limit))/2)/1.96 (2.1)
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and drew 10,000 random realizations from a normal distribution with mean equal to

log10(median) and the calculated standard deviation. We then exponentiated (base

10) these realizations to yield a sample from the abundance distribution on the linear

scale and fit a log-normal distribution (base e) to that sample, obtaining values for

the parameters µ (the logged-median abundance, or mean on the loge scale) and σ (the

standard deviation of the loge scale) of each log-normal distribution. We then obtained

10,000 random draws from each of these log-normal distributions, each used to model

the abundance of a given bird species. This procedure allowed us to move from the

original authors’ [35] choice of a base-10 logarithm to a more traditional base-e loga-

rithm and to generate a dataset that mirrors the original study’s underlying population

distributions [35].

Though our use of this dataset is intended for illustration purposes only, we wanted

to confirm our reconstruction of the data used in Callaghan et al. [35], as doing so al-

lows us to make direct comparisons between the estimates presented in the original

study [35] and those resulting from the alternative summing and summarizing ap-

proaches addressed below. As such, we recreated each of the plots in Callaghan et al.’s

[35] Fig. 2A and 2B (see Figures A.2 and A.3, respectively); we captured the data well,

with a similar global species abundance distribution and individual distributions for

species abundance. The average global population estimate over all 9,700 species was

5.2 million and the median estimate was 450,000, each equal to the estimate reported

by Callaghan et al. [35].

We then generated a distribution for global abundance of birds by simply sum-

ming the distributions for individual abundance. To illustrate why choices regarding

the distribution, summing approach, and measure of central tendency used all have

consequences for point estimates of global abundance, we then calculated this sum us-

ing a suite of different approaches that might be used by ecologists looking for scale-

consistent abundance estimates.
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2.3.2 Alternative solutions

In their analysis, Callaghan et al. [35] circumvent the issue of the median of the sum of

log-normal distributions being unequal to the sum of the constituent medians by sort-

ing the samples within the distributions for each bird species before summing them.

In other words, the smallest value in their distribution for global bird abundance rep-

resents the sum of the smallest values in the distribution for each bird species. As

described by Callaghan et al. [35], this sorted summing “ensure[s] that the likelihood

of values particular to each species correspond[s] with one another, therefore ensuring

that the middle values correspond to those with the highest likelihood". Rephrased

in the context of our analysis, this sorted summing ensures that the median of the

resulting summed distribution is the sum of the medians. Using the log-normal dis-

tributions generated above, we followed this sorted summing procedure to obtain a

second distribution for global abundance.

Another approach to ensure a scale-consistent distribution for global abundance is

found in the aforementioned method described by Hilborn and Mangel [96, pp. 73-

76 and 242-244], which shifts the log-normal abundance distribution for each species

such that the mean—which has the desired additive property but is too large to use

as the point estimate for abundance—replaces what was previously the median of the

distribution. This model produces scale-consistent estimates for individual species’

abundances (for which the point estimate is now the mean) and the total distribution

for global bird abundance (the mean of which is equal to the sum of the means of each

individual species’ abundance). While this adjustment has been used previously [39,

181, 190] and is, in fact, quite standard within the fisheries literature [153, 162, 163, 211,

220, 233], there has been little discussion of its use in the context of population biology

despite its utility in this context [39, 200]. We used this approach to obtain a third dis-

tribution for global abundance, using the parameters of the log-normal distributions

calculated above with the Callaghan et al. data [35] to generate shifted log-normal
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distributions as N ∼ log-normal
(
µ− σ2

2
, σ2

)
, and then summed them sample-wise.

Note that, for this procedure and those that follow, we sum constituent distributions

simply without sorting them first.

The constituent log-normal distributions for individual species abundance may

also be replaced by the (0,∞) truncated normal distribution with the same mean and

standard deviation (on the linear scale). Note that even with no change in µ or σ, the

expectation of this zero-truncated distribution is greater than µ [18]. Accordingly, we

obtained a fourth distribution for global abundance by summing zero-truncated nor-

mal distributions for each species as N ∼ truncN
(
eµ, (eσ

2 − 1)e2µ+σ2
, 0, ∞

)
, where µ

and σ are the parameters (on the loge scale) of the uncorrected log-normal distribution

calculated above and (eσ
2 − 1)e2µ+σ2 is the variance of that log-normal distribution on

the linear scale.

Another correction involves replacing the log-normal distributions for abundance

with a rectified normal distribution with mean eµ and standard deviation σ. As op-

posed to the zero-truncated normal distribution, the rectified normal moves the statis-

tical support for negative values to zero, leaving the median in most cases unchanged

[203]. This rectification can take place at the level of individual populations (i.e., be-

fore summing) or can be done after summing. We present both methods below. These

methods produce more scale-consistent distributions for global abundance by ensur-

ing the median of the resulting distribution of sums is equal to the sum of the point

estimates of the individual log-normal distributions representing single species’ abun-

dances. We generated our final two distributions for global abundance using normal

distributions for each species as N ∼ N
(
eµ, (eσ

2 − 1)e2µ+σ2
)

, where µ and σ are the pa-

rameters of the uncorrected log-normal distribution calculated above. For the rectify-

then-sum procedure, we rectified the individual distributions by taking the maximum

max(0, x) for each random draw x from the normal distribution and then summed

the distributions sample-wise to obtain the distribution for global abundance. For the

sum-then-rectify procedure, we sum the unrectified normal distributions sample-wise
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and then took the maximum max(0, s) for each sum s in this global abundance distri-

bution.

2.3.3 Performance of alternative solutions

As described above, in our re-analysis of the Callaghan et al. bird abundance data

[35], we compared the summing of uncorrected log-normal distributions for individ-

ual species’ abundance against five alternative approaches (Figure 2.5; note the log10

scale). Central tendencies used for the global abundance distributions are the follow-

ing: median for sort-then-sum log-normals; mean for the shift-then-sum log-normals;

mean for the truncate-then-sum normals; median for the rectify-then-sum normals;

and median for the sum-then-rectify normals. Note that, in Figure 2.5, histogram bin

widths underlying the kernel density plots shown are of equal width on the log10 scale

used in this figure; as a result, the bulk of the area under the curve as displayed falls

to the right of the distributions median. Plotted on a linear scale, the area under the

curve would be equally partitioned to the right and left of the median. Here we have

used the log10 scale both to match Figure 2.5b to Callaghan et al.’s original study [35]

and because the differences between the methods are difficult to visualize on a linear

scale.

The global abundance distribution obtained using the sort-then-sum log-normals

method used by Callaghan et al. (shown in Figure 2.5b) is a direct reproduction of

Fig. 2C in the original paper [35]. As was the motivation behind our study, the global

abundance distribution obtained by simply summing uncorrected log-normal distri-

butions for individual species’ abundance (Figure 2.5a) was far from the sum of all

species’ abundance estimates in its entirety. Three alternative methods of generating

a global abundance distribution had measures of central tendency close to the sum of

the medians of the individual species’ abundance distributions (cited by Callaghan et
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FIGURE 2.5: The total distribution of the number of individual birds in
the world, calculated by summing all species-specific abundance distribu-
tions for 9,700 bird species using various corrections. The median, mean,
and standard deviation (in billions) are shown for each distribution. The
dotted vertical line indicates the sum of individual species abundance es-
timates (50 billion). (a) uncorrected sum of log-normals; (b) sort-then-sum
of log-normals; (c) shift-then-sum of log-normals; (d) truncate-then-sum
of normals; (e) rectify-then-sum of normals; (f) sum-then-rectify of nor-

mals. Details in the text.

al. as 50 billion [35]): sort-then-sum log-normal distributions (Figure 2.5b), shift-then-

sum log-normal distributions (Figure 2.5c), and sum-then-rectify normal distributions

(Figure 2.5f). Of these global abundance distributions [35], the one obtained using

the sort-then-sum method (Figure 2.5b) had the largest standard deviation, 17 times

larger than the standard deviation of the global abundance distribution obtained by
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summing uncorrected log-normal distributions (Figure 2.5a) and more than 20 times

larger than that of any other corrective method’s resulting distribution. The global

abundance distributions generated using truncate-then-sum (Figure 2.5d) and rectify-

then-sum normal distributions (Figure 2.5e) were entirely larger than the sum of the

medians of the individual populations, a problem even more extreme than for the

global abundance distribution obtained by merely summing uncorrected log-normal

distributions (Figure 2.5a).

Performance of alternative solutions in simulation study

We also calculated the percent difference between the sum of the abundance esti-

mates for each individual species and the central tendency (either mean or median,

see above) of the global abundance distribution generated by each of the alternative

procedures presented above for the earlier simulation study. For each of the five pro-

cedures, 100 fictive populations are simulated using the given probability distribution

with µ = {2, 4, 6, 8} and σ = 0.2 consisting of 10, 000 random draws. The distributions

modeling each population’s abundance are assumed to be identical and independent.

The global abundance distribution was generated by summing these individual pop-

ulation abundance distributions, and an estimate for global abundance was obtained.

This was repeated for a total of 100 ensembles for each procedure.

All five alternative approaches introduced above allowed for scale-consistent es-

timates of global abundance to be obtained in this case (Figure 2.6). The percent dif-

ference between the point estimate for global abundance and the sum of the medians

of each individual population was negligible for each corrective procedure (compared

to an average percent difference of 2% obtained summing the uncorrected sum of log-

normal distributions). Across 100 ensembles, this percent difference was the least vari-

able for the shift-then-sum log-normal procedure.
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2.4 Discussion

We have shown here the issues involved in summing log-normal distributions mod-

eling abundance. These issues arise in a variety of contexts, regardless of the method

by which a log-normal distribution modeling abundance has been derived. It is worth

noting, however, that this distribution is often a posterior distribution estimated through

a Bayesian analysis. While our examination of our findings includes some points spe-

cific to this Bayesian approach, it is important to remember that the issues of summing

and summarizing distributions are generic and apply equally to both Bayesian and

frequentist approaches.
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2.4.1 The choice of point estimate

Our discussion of the challenges of summing log-normal distributions centers around

the use of the median as the "best" measure of central tendency to summarize a log-

normal distribution modeling abundance. It is worth reflecting on the advice provided

to ecologists for this choice. The mode is, by definition, the value of the distribution

that is most likely. In a Bayesian analysis, the mode is also the value most similar to the

maximum likelihood estimate when the prior is uninformative. The mean and median

minimize the sum of squared error and the sum of absolute error, respectively. These

basic facts, however, are unhelpful for most practitioners in choosing an appropriate

point estimate.

Perhaps surprisingly, ecological modeling textbooks provide scant advice on the

matter and are largely agnostic on the choice between mean, median, and mode when

deciding how to summarize a distribution, presenting them as largely interchangeable

choices [80, 140]. Gelman et al. [80] present one example in which the distribution of

a parameter includes unphysically negative values (akin to a normal distribution for

abundance) and note that "the marginal posterior mean is not always a good sum-

mary of inference about a parameter. . . because the posterior mean includes the cases

where [the parameter] is negative." Lunn et al. [140] touch on this briefly as well, not-

ing that "[t]here have been limited ‘guidelines’ for reporting Bayesian analyses" and

that "[w]here possible, full posterior distributions should be given. . . particularly for

skewed distributions." While we agree that the presentation of the full distribution

is important, it is no substitute for providing a concrete point estimate of abundance

in conservation contexts, particularly when providing information to policymakers

without specialized statistical knowledge.

Finally, as noted above, the uncertainty reflected in a distribution for abundance
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often arises from observation error. Using the median as the point estimate for abun-

dance implies that under-counts and over-counts are equally likely. Such an assump-

tion might be reasonable for many sampling methodologies. Additionally, the mean

(eµ+σ2/2) changes as a function of a survey’s precision. Thus, when using the mean as

the point estimate of true abundance, a stable population surveyed over time would

appear to decline as an artifact of declining measurement error over time (as might

happen, for example, with improved survey methods). The use of the median avoids

this logical inconsistency whereby different survey processes would change the un-

derlying population abundance. For both of these reasons, the use of the median is

often preferred over the mean when observation error is involved.

2.4.2 Callaghan et al.’s approach

The propagation of uncertainty from several log-normally distributed populations to a

distribution representing their sum is a surprisingly difficult task that has garnered far

too little attention given the consequences for conservation biology [85, 90, 122, 173].

The approach taken by Callaghan et al. [35] to sort the samples making up each indi-

vidual species’ log-normal abundance distribution before summing is, to our knowl-

edge, an unusual choice. While this summing procedure did generate scale-consistent

estimates for global abundance, it did so at the expense of the resulting distribution’s

variance. The standard deviation of the global abundance distribution became grossly

exaggerated under the sort-then-sum procedure, with a median of 50 billion, a mean

of 431 billion, and a range of 256 trillion (Figure 2.5b). This degree of uncertainty will

render the estimates for global abundance useless in many conservation contexts, as

was noted by critics [183].

Earlier concern regarding Callaghan et al.’s [35] methodologies, however, focused

on the acutely uncertain and often biased constituent distributions modeling individ-

ual species’ abundance [36, 183]. Our analysis identifies an important and previously
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unrecognized driver of uncertainty in their final distribution for global bird abundance

(the sort-then-sum procedure), and we have found that alternative approaches result

in distributions for global bird abundance with dramatically lower uncertainty. The

authors’ choice of the sort-then-sum procedure and the associated uncertainty is not

discussed in detail in the original study, nor is the difference between the mean and

median as alternative point estimates. While modifying the method by which abun-

dance distributions are summed will not address all of the concerns raised, it is impor-

tant to separate out sources of uncertainty so that each can be considered thoughtfully

and minimized where possible.

2.4.3 The choice of alternatives: Context matters

In our re-analysis of the global bird abundance data [35], two alternative models (i.e.,

replacing the log-normal distributions modeling individual species abundance with

shifted log-normal distributions or with normal distributions that are rectified after

summing) generated distributions for global abundance that were consistent with

the sum of the estimates from the individual distributions for species abundance.

Though they produced similar point estimates (using the mean and median, respec-

tively), these two methods generated different distributions for global abundance (Fig-

ure 2.5c,f). The distribution obtained using the shift-then-sum log-normal distribu-

tions procedure had the smallest variance of any global abundance distribution, with

a standard deviation about 10 times smaller than that of any other. The distribution ob-

tained using the sum-then-rectify normal distributions procedure had a median close

to the sum of the individual species’ abundance estimates but the mean of the distribu-

tion is pushed right after the distribution is rectified following summing. Additionally,

the global abundance distribution generated by summing zero-truncated normal dis-

tributions for individual species’ abundance (Figure 2.5d) had a mean (and median)

much larger than even the distribution obtained using raw log-normal distributions
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on account of the increased expected values of the constituent truncated distributions

[18]. Likewise, the global abundance distribution obtained using the rectify-then-sum

normal distributions procedure (Figure 2.5e) was entirely too large, since the individ-

ual distributions representing species’ abundances were heavily skewed by the rectifi-

cation process. Clearly, these two procedures led to extreme scale-inconsistency for the

Callaghan et al. data [35]. However, these issues may be less severe in a context where

fewer, less abundant, or less uncertain individual species are being summed. In the

case that species with more modest abundance uncertainties are modeled using iden-

tical and independent distributions, our simulation study showed that all alternative

methods presented here produced scale-consistent point estimates for global abun-

dance (Figure 2.6). Thus, while using shifted log-normal distributions worked well

in both contexts shown here, the suitability of these alternative procedures should be

assessed carefully for specific applications.

While we focus here on the use of log-normal distributions in the modeling of an-

imal abundance, which is an easily conceptualized problem with clear conservation

importance [3, 35, 48, 90, 99, 133, 173, 197, 207], there are many contexts in which

ecologists might be trying to sum unique log-transformed items or measures across

multiple temporal, spatial, or taxonomic scales. In addition to animal abundance, ex-

amples include quantities like biomass, mortality, and rainfall [17, 71, 113]. The use of

the sort-then-sum log-normals, shift-then-sum log-normals, truncate-then-sum nor-

mals, rectify-then-sum normals, and sum-then-rectify normals procedures provided

the scale-consistency that is desired in some scenarios. It is of the utmost importance,

however, to note that each of these approaches modified the distribution of the sum in

ways that can impact inference if the populations are very small, the uncertainties are

very large, or if the analysis requires a careful consideration of distribution statistics

other than the mean or median. The choice among these approaches depends on the

specific application and whether inference hinges only on a measure of central ten-

dency or whether other statistics, such as specific quantiles, may be needed. While
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the use of shifted log-normal distributions works well in both extreme examples pre-

sented here and has been used previously [39, 181, 190, 200], it should not be adopted

without thoughtful consideration of its impact in the context of the specific conserva-

tion question being asked.

2.4.4 Data-deficient species

As we have shown, the use of the log-normal distribution to model abundances caused

the most significant challenges for summing when population estimates were highly

uncertain, exactly the one might face with highly data-deficient species. Even for

species that have been surveyed in detail, the uncertainty surrounding abundances

can become very large over an extended period of time without observation data,

since, as described by Clark et al. [43], “as the interval between observations widens,

the variability contributed by process error increases correspondingly". In these cases,

the most current understanding of abundance for any given population may be highly

uncertain, and even small numbers of populations with such imprecise abundance es-

timates can contaminate global abundances unless care is taken to carefully choose the

summing procedure and the measure of central tendency used as the reported point

estimate. We also showed the challenge of summing abundances over multiple pop-

ulations was reduced, but not eliminated, when abundances were correlated across

populations. While such correlations may be present to a modest extent in a spatial

context, in which neighboring populations may have correlated errors, such correla-

tions would be absent in a context like that presented by Callaghan et al. [35]. In any

case, it was only in the most extreme and highly unrealistic situation of populations

with perfectly correlated errors that this difference actually collapsed to zero; in such

a scenario, the populations are functionally one single population.
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2.5 Conclusions

At its heart, our analysis calls into question under what conditions the log-normal dis-

tribution is appropriate for modeling animal abundance, particularly in cases where

the distribution represents a Bayesian posterior distribution directly interpreted as the

degree of belief one has in different values of abundance as true abundance (these

more philosophical issues are discussed in Appendix A.3). Our choices of distribu-

tions for modeling animal abundance are extremely limited; our wish list for the ideal

distribution includes one that is discrete, non-negative, closed under addition, and has

a variance that can be tuned separately from the mean. We are aware of no paramet-

ric distribution that satisfies all four of these criteria [178], and thus it is incumbent

on ecologists to select distributions whose shortcomings have the least impact on the

problem at hand. In fact, many popular distributions are both skewed and not closed

under addition, including the negative binomial distribution, and these also require

considerable care in their use (see Appendix A.4). While the log-normal distribution

emerges naturally from the exponential growth process and its non-negativity is con-

venient, its right skew can be severe when uncertainty is large and its use for conser-

vation relevant analyses should be undertaken with care and careful consideration.

The accurate estimation of abundance is important in its own right and we hope that

our analysis will encourage ecologists to think carefully about how their choices in

modeling abundance across different spatial or taxonomic scales may impact the final

estimates provided to stakeholders.
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Chapter 3

Heavy-tailed distributions in animal

population modeling

3.1 Introduction

Time series modeling often involves two components, a process model (Equation 1.3)

that describes the true underlying dynamics linking the abundance in year t− 1 to the

abundance in year t, and an observation model (Equation 1.6) that captures the ob-

servation process and any errors associated with the measurement of true abundance.

We concern ourselves here with the process model. A simple process model for Nt (the

abundance in year t) might follow Equation (1.3), which can be equivalently framed

as

log

(
Nt+1

Nt

)
= r + ϵ, ϵ ∼ N(0, σproc) (3.1)

where r represents the annual growth rate and σproc represents the process error (the

variation in true abundance driven by unmodeled processes) [43]. This represents an

exponential growth model, with the mean of the abundance in year t (Nt) depending

on the previous year’s abundance (Nt−1). Usually, the process model assumes that

logged abundance follows a normal distribution (as in Equation 3.1); however, recent

work [11] suggests that the normal distribution may not accurately fit the tails of some
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empirical distributions for animal population growth rates, and thus has the potential

for underestimating the probability of extreme population fluctuations.

Prior to the 2008 financial crisis, Nassim Taleb published The Black Swan [214], in

which he warned of black-swan events: unpredictable and statistically improbable

events that can nevertheless occur, often with extreme consequences. These black

swans, though rare, have a disproportionately large role in the dynamics of the sys-

tems in which they occur. For example, large, unpredictable swings in the stock mar-

ket account for the majority of financial earnings and losses [206, 214]. Additionally,

the loss of life in the largest wars in history far outweighs that of all other wars [182].

In epidemiology, superspreading events occur when an infected individual infects an

unusually high number of others [76, 134]; these events have been shown to drive out-

breaks of several infectious diseases including HIV [154] and respiratory illnesses like

SARS [199] and COVID-19 [10, 130]. Animal mass mortality events can also kill off

millions, or even billions, of individuals at once [68].

Though Taleb’s original theory espoused these black-swan events as unpredictable,

many investigations—particularly in quantitative finance—have focused efforts on

developing models that better account for these extreme events. One theory views

these black swans as tail events. Instead of these extreme events being viewed as

exceptional in some way, they are viewed simply as more extreme versions of stan-

dard events, belonging to the same statistical distribution. In this way, developing a

more accurate model for the time series is a matter of finding an accurate distribution

for population abundance, particularly one with tails heavy enough to accommodate

these black swans [2, 11, 103, 134].

Because of their disproportional effect on the systems in which they occur, these

black-swan events, sometimes referred to in ecology as ’catastrophes’, are one of the

most important considerations in predicting the persistence and viability of animal

populations [29, 149]. Anderson et al. [11] studied extreme population-level events

in over 600 animal species, finding evidence for the presence of black-swan events in
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about 4% of the animal populations studied, and most frequently in birds.

Understanding process error is both theoretically important and critical for the im-

putation of missing data and forecasting of population viability under climate change.

A particular example is that of the Adélie penguin (Pygoscelis adeliae), a colonial seabird

distributed across the Antarctic coast. Changes in abundance of Adélie penguins have

informed researchers’ understanding of how climate change is affecting the Southern

Ocean ecosystem [4, 39]. However, due to the remote nature of the Adélie habitat, it

is often difficult to consistently census all known Adélie colony sites [141]. Thus it is

important to be able to accurately model a time series of Adélie penguin abundance in

order to predict continent-wide trends if the species is to be used as a climate change

indicator. On account of the growing evidence for black-swan events in many animal

populations, it is important to employ an accurate distribution of process change in

any time series analysis of animal abundance.

Here we consider many alternative distributions to the normal distribution in Equa-

tion (3.1) to allow for a higher probability of extreme events. We first describe the

distribution of empirical Adélie penguin population growth and fit close several al-

ternative distributions to this data to identify the most promising candidates for an

Adélie penguin process model. Next we illustrate how several of these candidate dis-

tributions can be modeled in a Bayesian framework for future modeling work for any

animal species. In particular, we highlight the differences between employing these

more exotic distributions by using built-in JAGS functions—which are limited in se-

lection and can be parameterized quite non-intuitively—and manually defining like-

lihoods using either the ’zeros’ or ’ones’ tricks.
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3.2 Heavy-tailed distributions for Adélie penguin abun-

dance

To identify promising distributions to model Adélie penguin abundance, we first char-

acterize the shape of the distribution of empirical Adélie growth to determine if the

standard log-normal process model is in fact missing density in the tails (and thus un-

derestimating the probability of extreme events). We use data from all 271 Adélie pen-

guin breeding populations between 1970 and 2019, collected by the Mapping Applica-

tion for Penguin Populations and Projected Dynamics (MAPPPD; [102]) and calculate

the the logged change in abundance between consecutive years for which both years

had measured counts (log(Nt+1

Nt
), see Equation 3.1). We consider alternatives to both

the normal distribution in Equation (1.4) and the log-normal distribution in Equation

(1.5), fitting these alternative distributions to log(Nt+1

Nt
) and Nt+1

Nt
, respectively.

3.2.1 Quantifying heavy-tailedness

To determine if a normal distribution is the appropriate distribution for logged Adélie

penguin abundance (and thus a log-normal distribution for abundance on the linear

scale), we first calculate the skewness and kurtosis (’tailedness’) of the empirical dis-

tribution for log(Nt+1

Nt
) to understand the shape of this data and find candidate distri-

butions for fitting. A skewness-kurtosis plot (e.g., the one proposed by Cullen and

Frey [56]) plots skewness and kurtosis values for common distributions in order to

help choose distributions to fit data. A non-zero skewness would illustrate a lack of

symmetry in a distribution of interest, while the kurtosis reveals the weight of the tails

compared with those of the normal distribution (a normal distribution has a kurtosis

value of 3).

Figure 3.1 shows a skewness-kurtosis plot for the distribution of logged change

in Adélie penguin abundance. We estimated a skewness value of 1.023 and kurtosis
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value of 6.135 for logged abundance transition data. To take into account the uncer-

tainty of the estimated values of skewness and kurtosis, a non-parametric bootstrap

procedure was also preformed, with reported values of skewness and kurtosis plotted

along with those of the original observed data (Figure 3.1) [61]. The positive, non-zero

value for skewness indicates that this distribution is right-skewed, and the kurtosis

value reveals much heavier tails than the normal distribution. This gives valuable in-

formation to assist in the selection of candidate distributions with which to fit this data.

It is worth noting that the right-skewed nature of this distribution implies that extreme

events in this system are more often positive in nature, while the previous study from

Anderson et al. [11] suggests that black-swans in animal populations usually manifest

as population die-offs, not increases.

The large kurtosis value calculated for the empirical distribution for log-change in

Adélie penguin abundance indicates a significantly heavier-tailed distribution com-

pared to the normal used traditionally. In lieu of the normal distribution in Equation

(1.4), a Student’s t distribution may be more appropriate, allowing for varying lev-

els of kurtosis greater than or equal to that of the normal distribution. In addition,

we also consider other distributions with support for all real values and the poten-

tial for heavy tails, including the logistic, Cauchy, and Gumbel distributions [81, 84,

88]. Equivalently, we consider replacing the log-normal in Equation (1.5) with another

distribution with support for non-negative numbers. In this case (see Figure B.1), a

Gamma, Weibull, log-logistic, or Burr distribution should be considered as potential

alternatives [12, 21, 69, 157].
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FIGURE 3.1: Skewness-kurtosis plot for empirical Adélie abundance data
(log(Nt+1

Nt
)), including values for 1000 bootstrap samples. Values are also

given for several common distributions (the t distribution shown is the
standard Student’s t distribution).

3.2.2 Fitting candidate distributions

We next assess the fit of several candidate distributions for Adélie penguin abundance,

replacing either the normal distribution on the log scale (Equation 1.4) or the log-

normal distribution on the linear scale (Equation 1.5). The fitdistrplus package

[61] for R was used to fit each of these parametric distributions to the empirical Adélie

penguin data using maximum likelihood estimation (MLE). Goodness-of-fit statistics

like the Anderson-Darling measure the distance between the empirical distribution

and the fitted parametric distribution. We use the Anderson-Darling statistic in partic-

ular since it gives more weight to the tails of a distribution than other goodness-of-fit

statistics like the Cramer-von Mises and Kolmogorov-Smirnov; for this reason, the
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AD AIC BIC k

Normal 5.95 292.86 300.72 2
Student’s t † 0.39 80.55 92.34 3
Logistic 2.27 133.52 141.38 2
Cauchy 2.10 125.28 133.14 2
Gumbel * 9.85 180.11 187.97 2

TABLE 3.1: The normal distribution and alternative distributions (Equa-
tion 1.4) fit to empirical Adélie abundance data (log(Nt+1

Nt
)). Calculated

Anderson-Darling statistic (AD), Akaike Information Criterion (AIC), and
Bayesian Information Criterion (BIC) values are shown as well as the
number of parameters (k) for each distribution. †The nonstandard Stu-
dent’s t distribution, with mean µ, standard deviation σ, and degrees of
freedom ν, is fit here (it is defined for use in R by the ggdist package
[112]). *The Gumbel distribution is defined for use in R by the VGAM
package [238]. All other distributions are defined in Base R. Parameter

estimates for each fitted distribution are given in Table B.1.

Anderson-Darling statistic is often used in risk assessment and similar fields [56, 231].

However, since the Anderson-Darling statistic, like many others, does not consider

the complexity of each model, we also calculate Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC) values to avoid over-fitting. AIC and BIC

both penalize models based on the log-likelihood, discouraging the selection of those

with more parameters to fit [30]. For all three of these goodness-of-fit measures, lower

values indicate better fitting distributions.

On the logarithmic scale (Equation 1.4), several distributions out-performed the

traditionally-used normal distribution (Table 3.1). While the logistic and Cauchy dis-

tributions both showed a better fit for logged Adélie penguin growth than the normal

distribution, the Student’s t distribution showed the best fit by far. The Student’s t

distribution used here is the nonstandard distribution, with mean µ and standard de-

viation σ as well as degrees of freedom ν (defined in R in the ggdist package [112]).

This Student’s t distribution was fit with an estimated degrees of freedom parameter

of ν ≈ 2.5 (see Table B.1), accommodating the heavy tails of the empirical data (the

normal distribution is roughly equivalent to a Student’s t distribution with ν ≥ 30).
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AD AIC BIC k

Log-normal 5.95 310.04 317.90 2
Gamma 8.43 625.82 633.68 2
Weibull 24.29 828.49 836.35 2
Log-logistic ** 2.27 150.70 158.56 2
Burr ** 2.27 132.31 144.10 3

TABLE 3.2: The log-normal distribution and alternative distributions
(Equation 1.5) fit to empirical Adélie abundance data (Nt+1

Nt
). Calculated

Anderson-Darling statistic (AD), Akaike Information Criterion (AIC), and
Bayesian Information Criterion (BIC) values are shown as well as the
number of parameters (k) for each distribution. **The log-logistic and
Burr distributions are defined for use in R by the actuar package [66].
All other distributions are defined in Base R. Parameter estimates for each

fitted distribution are given in Table B.2.

The log-normal distribution (Equation 1.5) is out-performed by both the log-logistic

and Burr distributions when fitting Adélie penguin abundance on the linear scale (Ta-

ble 3.2). The Burr distribution (Burr Type XII) can accommodate a wide range of val-

ues of skewness and kurtosis and is most commonly used to model household in-

come (often referred to in this application as the Singh-Maddala distribution) [157,

213]. The log-logistic distribution is in fact a special case of the Burr distribution and

is commonly used in survival analysis, such as mortality rate from cancer following

treatment [21], and in economics to model wealth and income (referred to in this ap-

plication as the Fisk distribution) [69].

Thus the traditional process model defined by Equation (1.4) (or, equivalently,

Equation 1.5) is not the most accurate model for Adélie penguin abundance. The nor-

mal distribution traditionally used for abundance (Equation 1.4) underestimates the

likelihood of extreme events and a heavy-tailed distribution, like the Student’s t dis-

tribution, may be a more appropriate alternative. (Or, similarly, the log-normal distri-

bution in Equation 1.5 may be replaced by a distribution like the Burr or log-logistic.)

An accurate process model is critically important for modeling and forecasting popu-

lation dynamics for any animal species and therefore, as this case study of Antarctic
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penguins shows, heavy-tailed distributions should be considered as alternatives to the

de facto process models which may vastly underestimate extreme events.

3.3 Fitting heavy-tailed distributions in JAGS

We next consider several of the alternative distributions for animal abundance inves-

tigated above and show how they can be modeled in a Bayesian framework for future

modeling work for any animal species. In this analysis, rather than fitting particular

observed data, we simulate data from each candidate distribution and use JAGS [176]

to fit the distribution in question to that simulated data under a Bayesian framework.

We first use the built-in JAGS function to define the distribution’s likelihood, and then

use both the zeros and ones tricks in turn [155]. In this way, we can compare the dif-

ferences between using the built-in JAGS functions and using the more tunable, but

less automatic, zeros or ones tricks. We also fit these distributions to the simulated

data under a frequentist framework, using maximum likelihood estimation (MLE) as

a baseline with which to compare the results of our Bayesian models.

We consider the alternative distributions for abundance given in Table 3.3, each

with the potential for higher skewness and heavier tails than the normal distribution.

We consider the logistic and Student’s t distributions, to replace the normal distribu-

tion in Equation (1.4), and the Gamma and Weibull distributions, alternatives to the

log-normal distribution in Equation (1.5). Though the log-logistic and Burr distribu-

tions show more promise for replacing the log-normal distribution in Equation (1.4)

for Adélie penguins, we consider the Gamma and Weibull distributions because they

are represented by built-in functions in JAGS. The use of the zeros and ones tricks here

can act as a proof of concept for representing more uncommon distributions (specif-

ically those without built-in JAGS functions) in the future. In addition, alternative

distributions like the Gamma and Weibull may be more appropriate to replace the

traditional log-normal distribution (Equation 1.4) for other animal species. For this
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reason, we also include the logistic distribution as an alternative to the normal distri-

bution in Equation (1.5) in addition to the Student’s t.

3.3.1 Methods

Built-in JAGS functions

Table 3.3 gives the probability density function (PDF) for each candidate distributions,

along with their parameterizations, as defined in both R and JAGS [176]. For several

of these distributions, the parameterization used by the built-in JAGS functions differ

from the (more conventional) parameterization used in R. Commonly, built-in func-

tions in JAGS parameterize distributions using precision in lieu of the standard devi-

ation. Of particular note is the case of the Student’s t distribution, which is defined

in Base R as the standard Student’s t, having fixed mean 0 and standard deviation 1

(i.e. only parameterized by the degrees of freedom). The built-in function in JAGS for

the Student’s t distribution allows for nonstandard distributions, with non-zero mean

and non-unity standard deviation, in addition to the varying kurtosis dictated by the

degrees of freedom parameter [176]. The PDF of the nonstandard Student’s t distri-

bution has no simple closed-form expression. For this reason, we first consider the

standard Student’s t distribution (defined in Base R) to compare the efficacy of MLE,

JAGS using the built-in function, JAGS using the zeros trick, and JAGS using the ones

trick in fitting this distribution Next, we consider the nonstandard Student’s t distri-

bution (identified in Table 3.1 as a promising alternative to the normal distribution in

Equation 1.4 and defined for use in R by the ggdist package [112]) to compare just

the efficacy of MLE and JAGS using the built-in function in fitting this distribution.

Zeros trick

Consider the model Yi ∼ G(θ), where G is a distribution with parameters θ and is not

one of the distributions built into JAGS. Suppose the likelihood for the above model is

44



Distribution PDF R parameters JAGS parameters

Logistic
e−(y−µ)/s

s(1 + e−(y−µ)/s)2
location = µ

scale = s

mu = µ

tau = 3/(s2π2)

Student’s t
(Standard) †

Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

)
(
1 +

y2

ν

)− ν+1
2 (mean = 0, sd = 1)

df = ν

mu (mean)
tau (precision)
k = ν

Student’s t ‡ ⋄
mu = µ

sigma =
√

ν/(ν − 2)

df = ν

mu = µ

tau = (ν − 2)/ν

k = ν

Gamma
β

Γ(α)
yα−1e−βy

shape = α

rate = β

r = α

lambda = β

Weibull
k

λ

(y
λ

)k−1

e−(y/λ)k
shape = k

scale = λ

v = k

lambda = 1/λ

TABLE 3.3: Probability density functions (PDFs) and parameterizations
in both R and JAGS for the candidate distributions for abundance con-
sidered here. The logistic and Student’s t distributions are alternatives to
the normal distribution in Equation (1.4); the Gamma and Weibull distri-
butions are alternatives to the log-normal distribution in Equation (1.5).
†The Student’s t distribution defined in Base R is the standard (mean 0,
standard deviation 1) Student’s t, while JAGS allows for nonstandard
(non-central and/or non-standardized) Student’s t distributions using its
built-in function. ‡The nonstandard Student’s t distribution, like the one
defined by the built-in JAGS function, is defined for use in R by the
ggdist package [112]. ⋄The PDF of the nonstandard Student’s t has no
closed form, so the zeros and ones tricks cannot be used for this nonstan-
dard distribution. All other distributions are defined in Base R. Built-in

JAGS functions are described in the JAGS manual [176].

given as p(yi|θ) = Li. In order to model this in JAGS, suppose we have a set of obser-

vations Z = 0, each of which is assumed to be drawn from a Poisson(λi) distribution.

If we wish to model yi ∼ G(θ) as above, we can set λi = − log(Li) to obtain the desired

likelihood distribution. Thus with Z = 0,

Zi ∼ Poisson(λi), (3.2)

λi = − log(Li) (3.3)
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would result in the desired likelihood [121, 140, 155].

For example, to use the zeros trick to define the likelihood p(yi|µ, σ) ∝ 1
σ
e−

1
2(

yi−µ

σ )
2

(the PDF of the normal distribution), the JAGS model would read as follows:

model {

for (i in 1:length(y)){

z[i] ~ dpois(lambda[i])

lambda[i] <- log(sigma) + 0.5*pow((y[i] - mu)/sigma, 2)

}

sigma ~ dunif(0, 100)

mu ~ dunif(-100, 100)

}

where z is loaded into the model as a vector of all zeros (in addition to the data y ).

Ones trick

As an alternative to the zeros trick, consider again the model Yi ∼ G(θ) where G is a

distribution that is not built into JAGS. Now suppose we have a set of observations

X = 1, each of which is assumed to be drawn from a Bernoulli(pi) distributions. To

obtain the desired likelihood Li = p(yi|θ), we set pi = Li. Thus with X = 1,

Xi ∼ Bern(pi), (3.4)

pi = Li (3.5)

would result in the desired likelihood [121, 140, 155].

Below we include the JAGS code employing the ones trick for the same example

shown in Section 3.3.1, with p(yi|µ, σ) ∝ 1
σ
e−

1
2(

yi−µ

σ )
2

(the PDF of the normal distribu-

tion):
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model {

for (i in 1:length(y)){

x[i] ~ dbern(p[i])

p[i] <- pow(sigma, -1)*exp(-0.5*pow((y[i] - mu)/sigma, 2))

}

sigma ~ dunif(0, 100)

mu ~ dunif(-100, 100)

}

where x is loaded into the model as a vector of all ones (in addition to the data y ).

Procedure for each candidate distribution

For each candidate distribution G listed in Table 3.3, we simulate Y such that Y ∼ G(θ)

with known parameters θ. We then fit the original distribution G to the simulated

data Y using four distinct methods in order to obtain parameter estimates for the pa-

rameters θ. First, the distribution is fit using MLE under a frequentist framework,

employing the fitdistrplus package’s fitdist function in R [61]. This will give

a baseline for how well frequentist methods do in fitting these types of distributions.

Next, the distribution is fit in a Bayesian framework using the built-in function pro-

vided in JAGS [176]. Lastly, the distribution will be fit in JAGS using both the zeros

trick and the ones trick, as described above. This will allow for the comparison of not

only the efficacy of fitting these distributions using Bayesian methods to that using

frequentist methods, but also the relative performance of the built-in JAGS functions

to the zeros and ones tricks and the relative performance of the zeros and ones tricks

themselves.

All simulations are completed in R version 4.0.3 and JAGS version 4.3.0. Each JAGS

model simulated 10,000 samples from the posterior after an initial burn-in period of

2,000 simulations.
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3.3.2 Results

Parameter estimates for each candidate distribution are given for all four methods

(MLE, JAGS using built-in functions, JAGS using the zeros trick, and JAGS using the

ones trick) in Table 3.4 along with the true parameter values used to generate the sim-

ulated data of size N = 1000 (parameter values given for the JAGS models are pos-

terior means). These results show how differently the four methods fit each distribu-

tion, both when parameterizations differ greatly between R and JAGS (namely for the

logistic and Student’s t distributions) and when parameterizations are more similar

(Gamma distribution) or at least allow for more direct transformations (Weibull dis-

tribution). Trace plots and posteriors for each parameter in each JAGS model in Table

3.4 are given in Appendix B.2.

For most distributions, the built-in JAGS functions fit the simulated data similarly

to the MLE procedure (Table 3.4). The exception is the logistic distribution, for which

the model using the built-in JAGS function poorly estimates the shape parameter s.

In this case, the zeros and ones tricks both perform virtually identically to MLE, es-

timating both parameters well. This may be on account of the fact that the built-in

JAGS function model for the logistic distribution requires a potentially-troublesome

transformation of the parameter s to the precision, τ = 3/(s2π2) (see Table 3.3); to add

a complication to this transformation, JAGS does not define π, requiring a rounded

estimate of π to be hard-coded when calculating precision. When using the zeros and

ones tricks, the PDF of the logistic distribution is defined explicitly using the parame-

ters µ and s, avoiding the built-in JAGS function’s complicated parameterization. The

precision must also be calculated for the model using the JAGS built-in function to fit

the (nonstandard) Student’s t distribution to simulated data. In this case, the estima-

tion of the parameter σ also uses the precision, but the transformation (τ = (ν − 2)/ν)

is less complicated than that needed for the logistic distribution, and this JAGS model

estimates σ as well as MLE does (Table 3.4). In all cases, the zeros and ones tricks
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Distribution Parameter MLE Built-in JAGS Zeros trick Ones trick

Logistic
µ = 1

s = 2

0.99
1.96

0.99
0.77

0.99
1.96

0.99
1.96

Student’s t
(Standard)

ν = 5 5.08 5.15 5.25 5.26

Student’s t
µ = 1

σ = 0.5

ν = 5

0.98
0.51
5.07

0.98
0.51
5.24

⋄ ⋄

Gamma
α = 5

β = 2

4.92
1.93

4.92
1.93

4.93
1.94

4.92
1.93

Weibull
k = 1.5

λ = 1

1.52
0.99

1.52
1.00

1.52
1.00

1.52
1.00

TABLE 3.4: Parameter values for each fitted distribution, as compared to
true parameter values, for MLE (using the fitdistrplus package in R
[61]), JAGS model with built-in function, JAGS model with zeros trick,
and JAGS model with ones trick. Each model is fit to the same simulated
dataset of size N = 1000. Parameter values for JAGS models are posterior
means. Standard errors for each MLE parameter estimate are given in Ta-
ble B.3; posteriors for each JAGS model parameter estimate are given in
Appendix B.2.1. ⋄The PDF of the nonstandard Student’s t has no closed
form, so the zeros and ones tricks cannot be used to model this nonstan-

dard distribution.

fit each distribution to the corresponding data almost identically, with little difference

between the parameter estimates. For the (standard) Student’s t and Gamma distribu-

tions, the models using the ones and zeros tricks perform somewhat worse than MLE

and the built-in JAGS function models.

Table 3.5 shows the results of a sensitivity analysis of all four methods to the

amount of the data to be fit for the Weibull distribution (used here as a representative

example of a candidate distribution), showing the difference in parameter estimates

for decreasing sample sizes. There was no considerable difference between the per-

formance of the various methods and decreasing dataset size, with all methods fitting

the Weibull distribution increasingly poorly as sample size decreases below 500.
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N Parameter MLE Built-in JAGS Zeros trick Ones trick

1000
k = 1.5

λ = 1

1.52
0.99

1.52
1.00

1.52
1.00

1.52
1.00

500
k = 1.5

λ = 1

1.53
0.98

1.53
0.98

1.53
0.98

1.53
0.98

100
k = 1.5

λ = 1

1.41
0.92

1.40
0.93

1.40
0.93

1.40
0.93

50
k = 1.5

λ = 1

1.60
0.98

1.57
0.99

1.58
0.98

1.57
0.99

TABLE 3.5: Parameter values for fitted Weibull distributions, as compared
to true parameter values, for MLE (using the fitdistrplus package in
R [61]), JAGS model with built-in function, JAGS model with zeros trick,
and JAGS model with ones trick. Parameter values for JAGS models are
posterior means. Standard errors for each MLE parameter estimate are
given in Table B.4; posteriors for each JAGS model parameter estimate are
given in Figures B.12-B.14 and Appendix B.2.2. Models were run using

N = {1000, 500, 100, 50} data points.

3.4 Discussion

3.4.1 Adélie penguin case study

Recent work has found strong evidence for the occurrence of extreme black-swan

events in many animal populations, most frequently in birds [11]. Here we used

the Adélie penguin as a case study to identify heavy-tailed dynamics and determine

the best-fitting distribution for abundance. We showed that the traditional process

model defined by Equation (1.4) (or, equivalently, Equation 1.5) is not the most accu-

rate model for Adélie penguin abundance, underestimating the likelihood of extreme

events (see Tables 3.1 and 3.2). We identified several heavy-tailed distributions that

may be more appropriate alternatives to the normal distribution in Equation (1.4) (or,

similarly, the log-normal distribution in Equation 1.5). Namely, the Student’s t distri-

bution was the best fitting distribution for observed Adélie penguin abundance. Other

distributions, including the logistic, Cauchy (replacing the normal in Equation 1.4),
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log-logistic and Burr (replacing the log-normal in Equation 1.5), also out-preformed

the classic process model for this Adélie case study.

There are many more distributions with the ability to accommodate heavier tails

than that of the normal distribution (including some investigated here, see Tables 3.1

and 3.2) that may be the most fitting process model for other animal species. We urge

practitioners to consider carefully a suite of models to determine the most accurate

distribution for abundance, since, as we discuss next, many non-traditional distribu-

tions can be employed just as easily as the classic normal (i.e., log-normal on the linear

scale) distribution.

3.4.2 Heavy-tailed models in JAGS: A proof of concept

We also illustrated how heavy-tailed distributions like the ones identified in the Aélie

penguin case study can be modeled in a Bayesian framework using JAGS [177]. All

candidate distributions were fit well using MLE, which serves as a good baseline with

which to compare the three JAGS models (using the built-in JAGS functions, the ze-

ros trick, and the ones trick; Table 3.4). The built-in JAGS functions often performed

poorly when their parameterization differed greatly from the standard parameteriza-

tion used in R—namely for the scale parameter (s) of the logistic distribution. For

distributions with built-in JAGS functions that share a parameterization (or more di-

rect transformations) with R, the built-in JAGS functions do a good job estimating

parameter values, similar to the results from MLE. It is critical for one to understand

the likelihood and parameterization of the built-in distributions they use, as param-

eterization differences between languages can have significant effects on analysis. In

contrast, using the zeros or ones tricks in JAGS requires likelihoods to be defined ex-

plicitly, necessitating upfront an awareness of and appreciation for the distribution to

be fit and allowing for the use of a desired parameterization. The models employing
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the zeros and ones tricks in JAGS performed well in this analysis, avoiding parame-

terization confusion and the problems described above. Even for distributions whose

built-in JAGS functions fit well, the zeros and ones tricks mostly perform similarly to

MLE methods.

The zeros and ones tricks perform roughly equally to each other for all candidate

distributions (Table 3.4). The major difference between the zeros and ones tricks is

the scale on which the density function is defined. For the zeros trick, the (negative)

logarithm is taken of the likelihood, so probabilities are on the log scale; for the ones

trick, the likelihood is given on the original linear scale. For different likelihoods, one

scale may lead to more numerical issues than the other. Other than these potential nu-

merical issues, the zeros and ones tricks both perform well for the distributions tested

here and, other than these potential numerical issues, are likely to perform similarly

for other distributions. The fact that both methods are easy to implement in JAGS

means that any distribution with a closed-form PDF can be defined using one of these

’tricks’, including distributions that are not pre-defined by JAGS (or even those that

are not defined by any R package).

Here, we only fit alternative distributions for abundance in JAGS where there ex-

isted built-in JAGS functions to define the distributions’ likelihoods. This allows us

to evaluate the efficacy of the ones and zeros tricks for use with more exotic distribu-

tions, particularly those that are not defined in JAGS as built-in functions, including

the Burr, log-logistic, and Gumbel distributions (see Tables 3.1 and 3.2). Since these

distributions are less commonly used than those such as the logistic and the Gamma,

they do not have built-in JAGS functions and fitting them in JAGS would require the

use of either of these tricks. This work serves as a proof of concept for the zeros and

ones tricks as implemented in JAGS, allowing for a greater range of heavy-tailed (or

otherwise more specific) distributions to be fit to observed animal abundance in fu-

ture analyses and, importantly, the most appropriate process model to be employed in

a given application.
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3.4.3 Modeling alternative theories for extreme events

We have focused here on the black-swan theory of extreme events, aiming to represent

growth rate by a single heavy-tailed distribution. However, the methods established

here are not limited to the framework of this theory. An alternative theory suggests

that, at least in some systems, extreme events are beyond the extrapolation of the

power law or the use of heavy-tailed distributions for event generation. The study

of these events refers to them not as black swans but as ’dragon kings’, to emphasize

that these extreme outliers (’kings’) are a completely different animal (’dragons’), born

of unique origins relative to typical events [205].

Under this theory, a process model may not be represented by one heavy-tailed dis-

tribution but instead by a mixture of multiple different distributions, representing the

heterogeneous regimes of typical events and dragon-king events. These mixture mod-

els capture the bulk of the distribution with one model and either both of the tails with

another distribution, or each of the tails separately with their own distinct parametric

distributions. A simple mixture model might use one normal model (with a smaller

standard deviation) for the bulk of the distribution and a second normal model (with

a larger standard deviation) to capture the tails of the distribution. Another mixture

model proposed by Mendes and Lopes [161] assumes the bulk of the distribution to

be normal, with two separate generalized Pareto distribution (GPD) models used for

each of the upper and lower tails. Such implementations of the dragon-king theory

of extreme events may be represented using the zeros or ones tricks in JAGS, fitting

mixture models of several distributions to animal abundance data under a Bayesian

framework without relying on the built-in functionality of the software.

3.4.4 Accommodating skew

The Adélie penguin abundance data analyzed here as a case study for heavy-tailed

abundance dynamics not only showed much heavier tails than the normal distribution
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commonly used in models (e.g., [39, 104]), but also showed right skew (Figure 3.1); the

normal distribution, symmetric about the mean, is unable to capture any such skew.

The Student’s t distribution, which was identified here (Table 3.1) as the best-fitting

distribution for this empirical Adélie penguin data, unfortunately cannot accommo-

date any skew in the conventional parameterization (even the nonstandard parame-

terization used here), as it is also a symmetric distribution. To accurately include this

observed skew in a process model, a skewed distribution should be employed. The

skewed normal distribution [94] can be parameterized to include the level of right-

skew seen in the Adélie data, but the tails of this distribution still lacks the support

to correctly model extreme events. The generalized logistic (or, skew-logistic) [84] and

skew-Cauchy [13] distributions are heavy-tailed distributions that may be able to more

accurately replicate both the kurtosis and skewness seen in observed Adélie penguin

data. In addition, the skewed Student’s t distribution (also referred to as skewed gen-

eralized t distribution) [110] can accommodate both the skewness and kurtosis seen

here; this distribution may be the most promising candidate, since the (symmetric)

Student’s t distribution showed the best fit to the empirical data out of the distribu-

tions considered (see Tables 3.1 and 3.2).
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Chapter 4

Variability, skipped breeding, and

heavy-tailed dynamics in an Antarctic

seabird

4.1 Introduction

Variability of population abundance over time is an important facet of animal popu-

lation dynamics [44, 59]. Large temporal variation in animal species hinders the ease

with which time series for abundance can be used to accurately assess and predict pop-

ulation trends through time [23, 32, 191]. While large population fluctuations are seen

across the animal kingdom [83], time series of abundance are particularly variable for

colonially-breeding birds [11, 55]. Here, we study population abundance time series

of the Adélie penguin (Pygoscelis adeliae), a well-studied colonially-breeding Antarctic

seabird. The Adélie penguin shares life history traits with many long-lived colonially-

breeding birds and serves here as a study system for a more general investigation into

the causes and consequences of temporal population fluctuations in long-lived annu-

ally breeding species.

Heavy-tailed dynamics in animal populations and the associated extreme events

[11] have significant consequences for population viability [55, 68]. Because of their

disproportional effect on the systems in which they occur, these ’black-swan’ events
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are an important consideration in predicting the persistence and viability of animal

populations [29, 149]. Additionally, these unexpected events may increase in fre-

quency with increased human pressures on ecosystems [132]. For these reasons, devel-

oping an accurate model for time series dynamics requires an appropriate distribution

for interannual variation in abundance or growth rates, with tails heavy enough to

accommodate these rare events [2, 103].

Anderson et al. [11] studied extreme population-level events in over 600 animal

species, finding evidence for the presence of black-swan events in about 4% of the ani-

mal populations studied and 7% of birds specifically. While some of these putative ex-

treme events must be related to immigration/emigration rather than the dynamics of

a closed population [239], it remains true that many time series display non-Gaussian

dynamics that should be incorporated into ecological models. Here we consider the

possibility of non-Gaussian heavy-tailed dynamics of Adélie penguin abundance for

the first time.

4.1.1 Skipped breeding as a driver of stochasticity

The Adélie penguin is an important bellwether species long used to track the impacts

of climate change and fishing on the Southern Ocean ecosystem, with considerable

attention paid to the links between Adélie abundance and/or demography and en-

vironmental conditions. Though Adélie penguins are, barring extreme events [65],

largely site faithful [4], their population dynamics are characterized by large inter-

annual fluctuations [39, 111, 240]. While some environmental variables, notably sea

ice concentration, have been convincingly linked to broad spatiotemporal patterns in

Adélie trends [40, 104], interannual fluctuations in abundance at individual colonies

make it challenging to deduce the causal driver of population changes through time

[39]. Even more remarkably, time series of population abundance have low spatial co-

herence [198]; either Adélie penguins are responding to very fine scale environmental
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conditions below the resolution of earth-observing satellites, or penguins at neigh-

boring colonies are responding differently to the same ocean conditions. Either way,

the links between the observed environment and Adélie population dynamics remain

unclear, limiting our capacity to make precise forecasts of future abundance under

climate change.

Like many long-lived species, the fitness of individual Adélie penguins is influ-

enced by a large number of factors, the least understood of which is the decision to

breed (or not) in any given year. Skipped breeding is common among many birds,

especially among long-lived seabirds, and previous studies have demonstrated the

importance of skipped breeding in understanding seabird population dynamics [54,

107, 108]. However, estimates for the rate at which Adélie penguins skip breeding are

limited [16, 98] and the degree to which this drives population variability is unknown.

Since population censuses of colonial seabirds are usually conducted by counting nests

(or breeding pairs) present at the breeding colony, understanding the influence of

skipped breeding is necessary if we are to use census data to determine population

trends and forecast future population responses.

While skipped breeding has been estimated from flipper banding studies and has

been explicitly incorporated into some age-structured models [16, 98], analyses of total

penguin abundance through time [39, 40, 104, 143] typically include skipped breeding

only implicitly as a component of model ’noise’. These simpler models leverage rel-

atively widespread census data on the number of breeding pairs (equivalently, active

nests) through time and not the more logistically challenging data obtained through

flipper banding or related mark-recapture methods. As methods for population esti-

mation using satellite imagery become more widely utilized [124, 143, 142], the vol-

ume of data available on total breeding abundance through time is poised to grow

rapidly. It is in this context, in which abundance data is expanding in availability but

is characterized by large and unexplained fluctuations that complicate our mechanistic

understanding of population trends, that we sought to leverage the well-established
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understanding of Adélie life history and demography to investigate how fluctuations

in specific demographic rates (e.g., survival, reproduction, skipped breeding) manifest

in fluctuations in total breeding abundance. This study was organized around the fol-

lowing research questions: 1) Which components of life history are actually reflected

in time series of breeding abundance; 2) Are Adélie penguin dynamics accurately rep-

resented by Gaussian distributions for abundance, or are heavy-tailed distributions

more appropriate for representing their variability structure; 3) Which demographic

parameters are more likely to produce large interannual fluctuations in breeding abun-

dance and, potentially, heavy-tailed dynamics; and, finally, 4) Do spatial patterns in

the dynamics of Adélie breeding abundance correspond to patterns in environmental

conditions?

4.2 Methods

4.2.1 Age-structured model

To represent the complicated life history of the Adélie penguin, which breeds annu-

ally during Antarctica’s austral summer, we use an age-structured model that parti-

tions the total population into classes based on age with varying vital rates [37]. Age-

structured models have been used previously to capture the dynamics of many seabird

species [97, 107, 109, 224]. Since seabirds like the Adélie penguin are long-lived and

display delayed sexual maturity, age-structured models are an excellent tool for under-

standing the relationships between demographic rates and the abundance represented

in annual surveys at the breeding colony.

We construct the age-structured model described in Figure 4.1, where reproduc-

tive success and survival to the next age class are represented as Binomial processes.

The demographic parameters underpinning this age-structured model, which tracks
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FIGURE 4.1: (a) Age-structured model diagram in which Ni is the num-
ber of (female) individuals in age class i (individuals in age class i are in
their ith year of life, i.e. i − 1 years old); Bi is the number of (female)
individuals in Ni that attempted breeding in the current breeding season
(only individuals in age classes i = 4, 5, 6, 7+ are eligible to breed; indi-
viduals may choose to skip breeding for the season, and not enter Bi with
probability 1− b); Ci is the number of chicks (both male and female) suc-
cessfully produced by breeding class Bi. Each individual in Bi lays two
eggs with her partner; those eggs hatch and survive that breeding sea-
son each with probability r. N1 is the total number of chicks (both female
and male) that survived through the breeding season in which they were
born and is equal to C4 + C5 + C6 + C7+. The next breeding season, the
number of (female) individuals in N2 is drawn from a Binomial distribu-
tion with n = N1/2 and probability sjuv. Breeding abundance, here often
referred to as abundance, is equal to the sum B4 + B5 + B6 + B7+. (b)
Density plots for demographic parameters (top: r, reproductive success,
and sjuv, juvenile survival; bottom: sad, adult survival, and b, breeding
propensity). Parameter values for each year are drawn from truncated
normal distributions centered about the mean values for each parameter
(equal to the posterior medians from ABC parameter estimation), shown
here with standard deviations σ = 0.025, 0.05, and 0.1 (σ values used in

simulations range from 0.001− 0.1).

female penguins only, are reproductive success r, juvenile survival sjuv, adult sur-

vival sad, and breeding propensity b. The last of these key demographic rates, breed-

ing propensity, is the probability that a sexually mature penguin will choose to breed

in any given season. In this way, we allow for some number of individuals to skip

breeding each year (i.e., with probability 1− b), a life history trait of particular interest

for our analysis. Adélie penguins overwhelmingly lay two eggs in each clutch and

we assume each nest is comprised of two laid eggs, each of which has probability r

of successfully surviving to crèche (here defined as the point at which chicks are no
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longer closely incubated on the nest). The model easily accommodates age-specific

reproductive rates ri, survival rates si, and breeding probabilities bi, but other than

distinguishing between adult and juvenile survival, we present a simplified model in

which demographic rates are assumed the same across age classes. This reduced com-

plexity allows us to focus on the links between demographic stochasticity and the total

number of breeding pairs without loss of generality.

4.2.2 Parameterizing age-structured simulations

In order to simulate time series using demographic rates that reflect realistic scenarios,

we use Approximate Bayesian Computation (ABC) to estimate the true demographic

rates reflected in existing time series of Adélie penguin abundance through time at

Cape Crozier, one of the most well-studied Adélie colonies in Antarctica [64, 65, 145].

ABC methods do not require the evaluation of the likelihood function and thus can

be used to estimate parameter values in complex models (see [138] for a review of

ABC methods and their use in population models). We use the age-structured model

described above to estimate the values of the four demographic rates, reproductive

success (r), juvenile survival (sjuv), adult survival (sad), and breeding propensity (b)

by simulating time series using randomly drawn values for each of the four parame-

ters and then accepting or rejecting those time series (and thus their parameter sets)

based on their similarity (as described below) to observed time series of Adélie pen-

guin breeding abundance. In this way, we infer the underlying demographic rates

through their ability to generate dynamics commensurate with observation.

The initial population for the simulated time series is set to the actual Adélie nest

count from Cape Crozier in 1985 [144, 145], chosen since it is a large site for which there

is a nearly complete 30+ year time series and a history of mark-recapture studies [64,

65, 145]. For each simulation, parameter values for the initial year t = 1 (θ1) are drawn
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from Beta-distributed priors moment-matched to published estimates [64, 65, 97]. Af-

ter the initial year, demographic parameters for year t > 1 are drawn from truncated

(0, 1) normal distributions (σ = 0.025) centered around the initial year’s parameter

value for that time series (i.e., θt+1 ∼ TN(µ = θ1, σ = 0.025, 0, 1)). Simulated time

series are accepted or rejected based on mean absolute percentage error (MAPE) from

the full observed time series from Cape Crozier (data from 1982-2018, [144]). For com-

putational tractability we aimed for a 0.1 acceptance rate and set the MAPE threshold

accordingly. A total of 30, 000 simulated time series yielded 2772 accepted parameter

sets. The median of the accepted values for each demographic parameter was used in

the simulation study described below. Additional details on the estimation of demo-

graphic rates are included in Appendix C.1. Note that our extraction of demographic

rates from the published time series simply ensures that our simulated time series are

realistic, but the precise values used for average survival, reproduction, and breeding

propensity are largely inconsequential to our study of how variation in these factors

propagates to the dynamics of total breeding pairs.

4.2.3 Age-structured simulations

We simulate 75-year time series of breeding abundance (defined as the total number

of breeding pairs, or Btotal = B4 + B5 + B6 + B7+) via the age-structured model illus-

trated in Figure 4.1, seeded with identical initial populations. The value of each of the

four demographic parameters of the model r, sjuv, sad and b is centered on a constant

mean value equal to the posterior median from the ABC described above; these rates

are similar to those estimated by previous studies [64, 65, 97]. In each year t, values for

each parameter are drawn from a normal distribution truncated (0, 1) with standard

deviation σ (see Figure 4.1b). While true Adélie penguin demographic rates may be

correlated with one another, we assume for simplicity that each demographic param-

eter is realized from the truncated normal distribution independently each year. The
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number of individuals in each age class in year t (Ni,t) is calculated using the previous

year’s totals (Ni,t−1) and the current year’s adult survival (sad,t). Numbers of breeders

and chicks in year t (Ci,t and Bi,t) are calculated using the current year’s totals (Bi,t

and Ni,t, respectively) and the rest of the current year’s demographic parameters (rt,

sjuv,t, and bt). We simulate n = 10 time series for each value of σ in [0.001, 0.1], here

broken into m = 15 steps, for each parameter. For each step in this 15× 15× 15× 15 4-

dimensional space, 10 separate time series iterates are simulated. We also calculate ob-

served growth in abundance for each year of each iteration as the logged change in to-

tal breeding abundance, ObsGrowtht = log((
∑7+

i=4Bi,t)/(
∑7+

i=4Bi,t−1)). MAPE is used

as a metric for how closely growth in breeding abundance matches the true growth

in abundance, TrueGrowtht = log((
∑7+

i=4Ni,t)/(
∑7+

i=4 Ni,t−1)). Note that, since the age-

structured model is simulated using Binomial draws, the simulations are stochastic.

The described stimulation study was repeated for non-Gaussian, heavy-tailed in-

puts. Each year, parameter values are realized using a Student’s t distribution centered

on the same constant mean values as the corresponding truncated normal distribu-

tions described above, with standard deviation σ and degrees of freedom parameter

ν = 3.

4.2.4 Detecting heavy tails in observed abundance time series

We used a Bayesian state-space model to estimate annual Adélie nest abundances for

all known Adélie breeding sites from 1970 - 2020, grouped according to Antarctic Con-

servation Biogeographic Regions (ACBRs, see [219]). We used an exponential growth

rate model adapted from [39] that included observation error (uncertainty in the num-

ber of true nests counted in each year) and process error (stochastic variability in the

growth rate r) but, unlike [39], included no environmental covariates modulating the

average growth rate at each site. In addition, we replaced the Gaussian distribution

for true nest abundance in the process model (see equation 5 in Supplementary Data
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1 of [39]) with a shifted (mean ̸≡ 0) and scaled (standard deviation ̸≡ 1) Student’s

t distribution. Thus, we model the true (latent) Adélie nest abundance zi,t at the ith

breeding site located in ACBR R[i] in the year t as:

log(zi,t) ∼ student-t(µi,t = log(zi,t−1e
γR[i]), σ2

R[i], νR[i]), (4.1)

where the standard deviation (σ) and degrees-of-freedom (ν) of the Student’s t distri-

bution are estimated for each ACBR, and γR[i] is the region-specific mean growth rate.

Each of these parameter values (σR[i], νR[i], and γR[i]) is shared across each site in an

ACBR. The parameter ν of the Student’s t distribution dictates the heaviness of the

tails of the distribution: the smaller the value of ν, the heavier the tails of the distri-

bution; with ν ≥ 30, a Student’s t distribution is indistinguishable from the Gaussian

distribution with the same mean and standard deviation [128]. Using the estimated

values for ν, we classified each of the ACBR time series dynamics as either "heavy-

tailed" (ν < 30) or Gaussian (ν ≥ 30). We do not include any site or season effects. A

more detailed model description is included in Appendix C.2.

4.2.5 Krill/Environmental model

We used output from the Community Earth System Model version 2 (CESM2, see [58])

to investigate spatial patterns in food resource variability for Adélie penguins. CESM2

is a state-of-the-art Earth system model with a nominal 1° resolution. The ocean model

in CESM2 is the Parallel Ocean Program (POP), a level-coordinate ocean general circu-

lation model with 60 vertical levels. The marine ecosystem in POP is simulated using

the Marine Biogeochemical Library (MARBL). A thorough description of the ocean

ecosystem model in CESM2 is documented in [137]. The flexible structure of MARBL

facilitates the addition of multiple phytoplankton and zooplankton functional types.

A detailed description of the MARBL configuration used here is included in Appendix

C.3.
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The CESM2 simulation we used in this study was an ocean-sea-ice-only simula-

tion (i.e., only the ocean and sea ice components of CESM were active) forced by the

Japanese Reanalysis (JRA) atmospheric dataset [116]. One JRA "cycle" is 61 years long,

representing the observed historical atmospheric forcing over the period 1958 to 2018.

We performed two JRA cycles with CESM2 (122 simulation years total), and only an-

alyzed the second cycle when the model was "spun up". This simulation may be con-

sidered a global historical reconstruction of the physical ocean and marine ecosystem

over the period of atmospheric forcing, 1958 to 2018.

The diet of Adélie penguins primarily consists of krill and small fish [223]. To

understand how food resources for Adélie penguins may vary year-to-year, we com-

puted interannual anomalies (detrended annual means) of various ocean ecosystem

variables over the 1958 to 2018 period. The macrozooplankton group in CESM is

representative of krill and other large crustacean zooplankton and therefore could be

consumed directly by Adélie penguins. The mesozooplankton group, however, rep-

resents smaller zooplankton crustaceans, such as copepods, and could serve as a food

source for fish, which could, in turn, be consumed by penguins; this group, there-

fore, can be considered an indirect food source for Adélie penguins. In order to sim-

plify the analysis and capture of full potential of food resources for Adélie penguins,

we grouped the small microzooplankton and microzooplankton biomass together as

"small zooplankton" and mesozooplankton and macrozooplankton biomass together

as "large zooplankton", with the large zooplankton group being representative of food

resources for Adélie penguins. We depth-integrated zooplankton biomass fields over

the top 150m of the ocean. Finally, we computed the standard deviation of interan-

nual anomalies on a gridcell-by-gridcell basis of depth-integrated biomass of large

and small zooplankton, as well as other potential sources of variability, such as net

primary production (NPP) and sea ice coverage, and examined geographic patterns of

the standard deviation of these variables.
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4.3 Results

The age-structured model framework and the resulting relationship between changes

in demography and the observed breeding abundance are illustrated in Figure 4.2.

In particular, year t breeding propensity (b) affects year t breeding abundance, but

all other effects are lagged. Changes in adult survival (sad) in year t are not seen in

abundance until year t+ 1, while changes in juvenile survival (sjuv) and reproductive

success (r) are not seen until years t + 3 and t + 4, respectively. Breeding propensity

has the most complicated effect on observed breeding abundance. A single change in

breeding propensity in year t is seen twice in breeding abundance: the first is imme-

diately in year t, since changing the proportion of individuals who breed in a given

year directly affects the number of birds present at the colony for observation. The

second effect on abundance of changing breeding propensity occurs in year t+5, a full

model cycle later. This signal is much weaker, as it has been dampened over time by

the other demographic parameters. Though these relationships are direct translations

of the model description, two important observations seen here will shape the remain-

der of the results (Figure 4.2): (1) extreme changes in breeding propensity cause large,

immediate fluctuations in observed breeding abundance that obscure true trends but

generate only small changes in long-term abundance; and (2) extreme events in adult

survival have the largest long-lasting impact on breeding abundance.
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FIGURE 4.2: Time series for abundance with constant demographic pa-
rameters except in year t = 20, when a positive (darker shade) or nega-
tive (lighter shade) extreme event occurs for one of the parameters. Base
values for parameters are r = 0.75, sjuv = 0.75, sad = 0.75, and b = 0.80.
When an extreme event occurs for one of the four demographic parame-
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events).
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FIGURE 4.3: Scatter plots of (a) breeding abundance and (b) growth in
breeding abundance vs. each of the four demographic parameters with
various lags. Lags are as follows: 4 years for r, 3 years for sjuv, 1 year
for sad, and 0 years for b. In each plot, the standard deviation of the pa-
rameter of interest is high (0.1), while the standard deviations of the other
three parameters are low (0.001). Regression lines (dark blue) and 95%
confidence intervals (light blue) are shown, along with R-squared values.
*** indicates a significant correlation with p < 0.001; * indicates a signifi-
cant correlation with p < 0.05. (c) Scatter plots of true growth in breeding
abundance vs. observed growth in breeding abundance. In each plot, the
standard deviation of one parameter (from top: reproductive success r,
juvenile survival sjuv, adult survival sad, and breeding propensity b) is
high (0.1), while the standard deviations of the other three parameters are
low (0.001). Mean absolute percentage error (MAPE) values are shown

for each case.
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4.3.1 Breeding propensity and adult survival drive observed abun-

dance

Each demographic parameter affects breeding abundance on a different time scale

(Figs 4.2, 4.3a). Considering each demographic parameter with the lags identified in

Figure 4.2, breeding abundance is most strongly correlated with breeding propensity

in year t (positive correlation, R2 = 0.0561, p < .001; Figure 4.3a). No correlation is seen

between breeding abundance and the other three demographic parameters (reproduc-

tive success, juvenile survival, and adult survival) in the current year t (see Figure C.8).

However, breeding abundance in year t was positively correlated with adult survival

in the previous year t− 1 (R2 = 0.0158, p < .001; Figure 4.3a; see also Figure C.9) and,

to a lesser extent, positively correlated with the juvenile survival from year t − 3 (R2

= 0.0074, p < .05; Figure 4.3a; see also Figure C.11). Breeding abundance in year t was

also negatively correlated with adult survival in year t − 2 (see Figure C.10). When

all parameters vary maximally (i.e. the standard deviation of each parameter is 0.1),

a positive correlation between abundance and that year’s breeding propensity is still

evident (R2 = 0.0053, p < .05; see Figure C.20), but it is dominated by the correlation

with adult survival from the previous year t− 1 (R2 = 0.02, p < .001).
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FIGURE 4.4: (a) Scatter plots of standard deviation in breeding abundance
vs. standard deviation in each of the four demographic parameters. In
each plot, the standard deviation of the parameter of interest increases
from 0.001 to 0.1 along the x-axis (with 10 iterates per value of σ, one for
each identical stochastic run of the simulation study), while the standard
deviations of the other three parameters are constant at 0.001. (b) Scatter
plots of growth in breeding abundance vs. standard deviation in each of
the four demographic parameters. In each plot, the standard deviation of
the parameter of interest increases from 0.001 to 0.1 along the x-axis (with
a data point for each consecutive pair of years in the simulated time series
for each of 10 iterations of the simulation for each value of σ), while the
standard deviations of the other three parameters are constant at 0.001.
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4.3.2 High variability in breeding abundance decouples observed

and true abundance

All four demographic parameters have significant positive correlations with the growth

of breeding abundance in year t when the above lags are considered (Figure 4.3b; addi-

tional results in Appendix C.4). MAPE is highest for the case where breeding propen-

sity is the only parameter varying maximally (Figure 4.3c). Thus, when breeding

propensity is highly variable, observed growth rates (i.e., growth in breeding abun-

dance) is least predictive of true growth in abundance.

Using ordinary least squares regression, there are no significant relationships be-

tween the standard deviation of abundance and the standard deviation of any of the

demographic parameters (Figure 4.4a); however, errors are shown to be heteroskedas-

tic in some cases. With growing variation in adult survival and, to a lesser extent, juve-

nile survival, the spread of the standard deviation in abundance (over 10 simulations)

increases. However, the value of sd(Abundance) remains centered at about 200,000

over all simulations. Heteroskedasticity is also observed for the growth in breeding

abundance against variability in adult survival and breeding propensity (Figure 4.4b),

with the spread of growth increasing most for high variability in breeding propen-

sity. Additionally, all four demographic parameters have significant positive linear

relationships between their variability and the variability of growth in breeding abun-

dance (see Figure C.21). Variability in breeding propensity had the largest impact on

variability in growth, followed by variability in adult survival.

4.3.3 Spatial patterns in heavy-tailed abundance dynamics correspond

to regions of high environmental variability

Adélie colonies in the Northwest Antarctic Peninsula (NW AP, ACBR 3; Figure 4.5)

were determined to have solidly heavy-tailed dynamics (posterior mean of ν̄R3 = 3.1;

see Appendix C.2). The South Orkney Islands (ACBR 2) were also classified as having
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(9) South Victoria Land

(8) North Victoria Land (13) Adelie Land

(7) East Antarctica

(16) Prince Charles 
Mountains

(5) Enderby Land

(14) Ellsworth Land

FIGURE 4.5: Antarctic Conservation Biogeographic Regions [219] labeled
according to Adélie penguin population dynamics, as determined by val-
ues of the degrees of freedom parameter (ν) of the Student’s t distribu-
tion fitted to nest abundance in our Bayesian state-space model. Re-
gion names are underlined according to degree of heavy-tailed dynam-
ics identified: very heavy-tailed (ν ≤ 5; triple underline), moderately
heavy-tailed (5 < ν ≤ 15; double underline), or slightly heavy-tailed
(15 < ν < 30; single underline). Regions with no underline did not have
enough data to gain low enough prior-posterior overlap to present re-

sults. Full results are given in the Appendix C.2.

heavy-tailed dynamics, but to a lesser extent (ν̄R2 = 13.2). North Victoria Land (ACBR

8), South Victoria Land (ACBR 9), and Enderby Land (ACBR 5) were each determined

to have dynamics that are closer to Gaussian (ν̄R8 = 21.3, ν̄R9 = 26.6, ν̄R5 = 25.1),

but still below the threshold of ν ≥ 30 for identically Gaussian dynamics. Because
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FIGURE 4.6: Interannual variability of ecosystem variables from CESM2
over the simulation period 1958 to 2018 for the Antarctic region. Panel
(a) shows the standard deviation (σ) of modeled depth-integrated large
zooplankton biomass. Panels (b), (c), and (d) show standard deviation
(σ) of depth-integrated net primary productivity (NPP), depth-integrated
small zooplankton biomass, and fractional sea ice coverage, respectively.

of differences in data density, we have the highest degree of confidence in the results

for the NW AP and South Orkney Islands and less confidence in the results for North

and South Victoria Land and Enderby Land. There was insufficient data within the

other ACBRs (uncolored in Figure 4.5) for the model to estimate the parameter ν (as

determined by the overlap of the posterior distribution with the prior and measures

for convergence) and these results are included in Appendix C.2 but omitted from

further consideration.

Heavy-tailed dynamics in Adélie abundance correspond with regions of high en-

vironmental variability (Figure 4.6). In particular, the regions identified as having

heavy-tailed dynamics—the NW AP, South Orkney Islands, and North and South Vic-

toria Land—all experience high variation in large zooplankton biomass, suggesting
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that variability in food resources could be contributing to variability in Adélie abun-

dance (Figure 4.6a). Additionally, the region which displayed the most significantly

heavy-tailed Adélie abundance dynamics, the NW AP, also experiences the highest

levels of variability in large zooplankton biomass and NPP across the Southern Ocean

(Figure 4.6a,b); this is in contrast to small zooplankton biomass variability, which is

relatively low in the NW AP (Figure 4.6c). Variability in sea ice coverage (Figure 4.6d)

may also influence primary production and krill abundance, especially in areas like

the NW AP where sea ice variability is high (e.g., see [189]). While disentangling the

links between zooplankton and sea ice variability is beyond the scope of this paper, it

is worth pointing out that variability in sea ice coverage in areas such as the NW AP

could also be contributing to heavy-tailed Adélie abundance dynamics in this region.

4.3.4 Highly variable adult survival drives heavy-tailed abundance

dynamics

In the simulation study, distributions for abundance resulting from simulations with

combinations of highly variable demographic parameters were fit with Student’s t

distributions. We found a significantly higher (p < .001) probability of obtaining time

series with heavy-tailed dynamics with highly variable adult survival (σ = 0.1) than

with minimally variable adult survival (σ = 0.001), regardless of the variation in the

other demographic parameters (see Figure C.23). In fact, the only inputs to the system

that resulted in a probability of heavy-tailed dynamics any higher than 0.2 had highly

variable adult survival rates; in these cases, the probability of heavy-tailed abundance

dynamics ranged from 0.3 - 0.8 (mean = 0.4). Adult survival is the only vital rate

in which an increase in probability of heavy-tailed dynamics is seen with increasing

variability (see Figure C.22).

Results of the simulation study using non-Gaussian heavy-tailed inputs for de-

mography generally followed those obtained using Gaussian variation: abundance in
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year t is correlated with breeding propensity in year t, adult survival in year t− 1, ju-

venile survival in year t− 3. In this case, abundance in year t was also correlated with

reproductive success in year t−4 (see Figure C.25). Notably, correlations between vari-

ation in abundance and variation in reproductive success, adult survival, and breeding

propensity were found when demography varies according to a Student’s t distribu-

tion (Figure C.27). Surprisingly, these correlations are all negative, meaning increased

heavy-tailed variation in these demographic parameters leads to decreased variation

in breeding abundance. Further, we found that variation in abundance is significantly

lower for high variation Student’s t inputs than it is for low variation Student’s t in-

puts (Figure C.28). In the context of these results, it is important to note that our model

does not include density dependence. Additionally, when parameters are drawn from

a Student’s t distribution, there is still a significant increase in the probability of heavy-

tailed abundance dynamics seen with increased variability of adult survival (Figure

C.29), as was observed for Gaussian inputs. Interestingly, we found significantly less

variation in breeding abundance in time series resulting from heavy-tailed inputs than

those with Gaussian inputs (see Figure C.30).

4.4 Discussion

Since population censuses of colonial seabirds like the Adélie penguin are usually con-

ducted by counting nests (or breeding pairs) present at breeding colonies, skipped

breeding is fundamental to our understanding of how census data should be used

to estimate trends and forecast population responses. We have shown that breeding

propensity drives observed breeding abundance (Figure 4.3a) and, importantly, fluc-

tuations in growth of breeding abundance (Figure 4.4b) more than any other vital rate.

Therefore skipped breeding interferes with our ability to link breeding abundance

fluctuations with any other component of Adélie penguin life history. Predictably,
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high variability in breeding propensity also caused the largest decoupling between

true growth in abundance and observed growth (Figure 4.3c).

While some have argued that skipped breeding among Adélie penguins is too

infrequent to be important [16], other studies have indicated that many individuals

may choose to defer breeding in some years [4, 151]. Given the direct link between

skipped breeding and abundance in a given year, and the capacity of skipped breed-

ing to obfuscate other important links between environmental conditions and Adélie

penguin dynamics, this aspect of Adélie life history is understudied. It is worth em-

phasizing that uniformly high rates of skipped breeding are not as problematic to our

interpretation of census data as variable skipped breeding, since the long-run aver-

age population at the breeding colony would remain indexed to the total population

of breeding-age adults. High interannual variability in breeding propensity, even if

skipped breeding is low on average, may explain the difficulty of correlating fluctu-

ations in abundance to environmental conditions [39], the short forecast horizon for

Adélie dynamics [101], and the lack of spatial and temporal transferability of popula-

tion trends and their environmental drivers [198].

The conservation implications of this finding are considerable, not just for Adélie

penguins but potentially for other species whose life history strategy includes skipped

breeding, such as many seabirds. In the Antarctic, the Adélie penguin is one of sev-

eral species regularly monitored by the Commission for the Conservation of Antarctic

Marine Living Resources Ecosystem Monitoring Program (CEMP), whose stated ob-

jectives are to "monitor the key life-history parameters of selected dependent species"

(e.g., the Adélie penguin) as a means by which to track populations of target species

like Antarctic krill, on which much of the Antarctic food web depends [49]. Specifi-

cally, "[s]uitable ’indicator species’ should show measurable responses to changes in

the availability of [krill], for example in changes in population size" [49]. Our results

here provide one explanation for why fluctuations in abundance may be so difficult to

link to environmental conditions and imply that other metrics tracked by CEMP (such
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as foraging behavior) may be more valuable for monitoring the impact of krill fishing

on krill predators such as the Adélie penguin.

The effects of varying each demographic rate in isolation on breeding abundance

were not consistent with the effects resulting from multiple rates varying simulta-

neously. For example, when all demographic rates are varying maximally (Figure

C.20), observed breeding abundance had the strongest correlation with adult survival

(lagged one year). Further up the life cycle, a positive correlation between abundance

and breeding propensity (in the current year) was present, but it was less strong than

the correlation with adult survival. This suggests that the effect of variable breeding

propensity is less important when multiple vital rates are highly variable, though it

will still serve to obscure true abundance and growth trends observed from breeding

abundance.

The longevity of the effect of variability of demography on breeding abundance

also depended on the type of the demographic rate. For example, while variability

in breeding propensity causes large immediate interannual fluctuations in observed

breeding abundance, extreme skipped breeding events generate only small long-term

changes in abundance (Figure 4.2). Extreme events in adult survival, however, cause

long-term changes in both observed and true abundance. It is important to high-

light the fact that breeding propensity and adult survival are independent in this age-

structured model, though in reality life history trade-offs and density dependence (not

included here) likely drive a correlation between them over the long term.

While breeding abundance was correlated with breeding propensity and adult sur-

vival with lags dictated by the structure of the age-structured model (Figure 4.3a, lags

illustrated in Figure 4.2), there was no correlation between breeding abundance and

reproductive success (4-year lag, Figure 4.3a), and only a small correlation between

breeding abundance and juvenile survival (3-year lag, Figure 4.3a). Further, we found

no correlation between breeding abundance in year t−5 and breeding propensity (see

Figure C.13), while Figure 4.2 shows a clear effect of an extreme breeding propensity
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event on abundance after 5 years. Thus the "last" (i.e., furthest down the life cycle)

correlation between breeding abundance and demography was with juvenile survival

in year t− 3. Perhaps since the value of sjuv is relatively low [64, 65, 97], it acts to erase

fluctuations from earlier stages in the life cycle. Thus lagged signals from reproductive

success, breeding propensity and—to a lesser extent—juvenile survival itself, do not

propagate to abundance. However, fluctuations from adult survival (in year t−1) and

breeding propensity (in year t) emerge more strongly in abundance since they affect

breeding abundance after juvenile survival in the life cycle. It is important to note that,

even where we find correlations between breeding abundance and demography, ex-

plained variance (R2) is low, emphasizing how difficult it is to link observed breeding

abundance at the colony to demographic life-history parameters.

4.4.1 Heavy-tailed dynamics

Extreme fluctuations in breeding abundance, either caused by breeding propensity

or adult survival, do not necessarily follow a Gaussian distribution. Here we showed

that many regions of Antarctica are characterized by a distribution for abundance with

heavier tails than befit a Gaussian distribution—with the most significant heavy-tailed

dynamics occurring in the Northwest Antarctic Peninsula (Figure 4.5). We also found

that the presence of heavy-tailed dynamics was strongly correlated with variability in

adult survival in time series for Adélie abundance simulated using our age-structured

model (Figure C.23). Importantly, Gaussian-distributed adult survival led to non-

Gaussian dynamics for abundance. In other words, heavy-tailed distributions for de-

mographic rates are not necessary for heavy-tailed dynamics in abundance. These

results provide evidence that the heavy-tailed dynamics identified in regions like the

NW AP may be driven by high interannual variability in adult survival rates. Pre-

vious studies, including a long-term mark-recapture study on the NW AP [97] and

others [70, 193], have found that adult survival rates in the region are characterized by
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high variability, most of which could not be explained by environmental conditions

but, as suggested by our findings, could be related to variability in large zooplankton

(mesozooplankton and macrozooplankton) biomass and NPP (Figure 4.6).

4.5 Conclusions

Irrespective of how populations are counted, Anderson et al. [11] found evidence

of heavy-tailed abundance dynamics across 38% of taxonomic orders, including in

many insect species and other systems with drastically different life history strategies

from the colonial seabird studied here. Thus, the possibility of heavy-tailed dynam-

ics should be considered when simulating time series for any species, especially those

subject to extreme events. Conversely, population forecasts incorrectly assuming a

Gaussian distribution (when a heavier-tailed distribution would be more appropriate)

will be overly optimistic and tend to underestimate extinction risk. We are not aware

of any study that quantifies the conservation cost of using a Gaussian distribution to

model a system that shows signs of extreme population events, but we believe this

is an important research direction. In the meantime, we urge modelers to consider

heavy-tailed distributions like the Student’s t when making forecasts of population

abundance. The Student’s t distribution is particularly convenient since its use does

not presuppose heavy-tailed dynamics and, in the limit ν → ∞, approaches the Gaus-

sian exactly. While we focused here on the evidence for, and drivers of, heavy-tailed

abundance dynamics, more work is needed to quantify the potential increase in model

accuracy with the use of a more flexible distribution for abundance like the Student’s

t.
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Chapter 5

How high interannual variability

affects the Living Planet Index:

Implications for null models

5.1 Introduction

Developed by the World Wildlife Fund (WWF) and the Zoological Society of Lon-

don, the Living Planet Index (LPI) [136] measures the overall global trend in verte-

brate abundances since 1970. The LPI aggregates population time series for vertebrate

species from terrestrial, freshwater, and marine systems into a relative index in which

the baseline (1.0) is adjusted to the population measure in 1970. Every two years,

the LPI is updated and summarized in the Living Planet Report (LPR) [8]. The LPI

has become a prominent indicator of global biodiversity change due to its value to

policymakers and its use in assessing the progress toward many biodiversity targets,

including the 2011-2020 Aichi Biodiversity Targets set by the Convention on Biologi-

cal Diversity [50] and the Kunming-Montreal Global Biodiversity Framework, agreed

to in 2022 [51]. As the LPI simplifies global species trends across systems to a single,

easily-understood metric, it is a powerful tool for practitioners, policymakers, and the

public alike.
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5.1.1 Calculation of the LPI

The LPI is calculated from the animal population time series data compiled in the

Living Planet Database (LPD) [139]. As of 2022, the LPD contains 30,000 population

trends for more than 5,200 species of vertebrates (including fish, amphibians, reptiles,

birds and mammals) [8]. Since we consider here caveats of the LPI brought on by

methodological choices in its calculation, we first describe the procedure for generat-

ing the index.

The LPI is calculated using the geometric mean of trends for each species. First,

data gaps in empirical population time series are interpolated using either a Gener-

alized Additive Model (GAM) [47] or what is known as the chain method [136]. For

population time series with at least six observed counts (with Nt being the observed

count in year t), a GAM is fit on the values of log10(Nt), with the smoothing parameter

set to half the number of observed counts for that population [47]. The fitted GAM

values are then used to calculate predicted values of Nt (N ′
t) for all years from the first

to the last observation (including those with observed counts in addition to those with

missing data). For population time series with less than six data points, or for which

the GAM results in a poor fit, the chain method (log-linear interpolation) is used for

interpolation instead [136]:

N ′
t = Np(Ns/Np)

[(t−p)/(s−p)], (5.1)

where p is the year preceding t with a measured value and s is the subsequent year

with a measured value. In this way, N ′
t is calculated for all years between the first and

last observed population counts. (For time series in which Nt = 0 for some year t, one

percent of the mean population for the whole time series is added to all years before

interpolation by either the GAM or chain method.)

With fully interpolated time series for each population, annual trends for each

species are then calculated as the logarithm of the ratio of population measure for

80



successive years:

dt = log10(N
′
t/N

′
t−1), (5.2)

calculated for each population time series for all t after the first observed population

count, through the last observed count. For species with more than one population

time series, the modeled annual trends dt for each population are then averaged to-

gether to obtain a single set of annual trends:

d̄t =
1

nt

nt∑

i=1

dit, (5.3)

where nt is the number of populations for that species and dit is calculated as above

for population i. Next the index value I is calculated in year t as

It = It−110
d̄t , (5.4)

with I0 = 1 for the initial year, usually set as 1970.

A bootstrap resampling technique is used to generate confidence intervals for the

LPI. Each bootstrap replicate is calculated by sampling nt species-specific values of dt

at random with replacement from the nt observed values. This is performed for each

interannual interval and d̄t and It are calculated as described above. The bootstrapping

procedure is implemented 10,000 times, with the bounds of the central 9,500 I values

for each year representing the 95% confidence interval for the index in that year [47].

The above procedure to calculate the LPI and associated confidence intervals can be

automated using the R package rlpi [159].
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5.1.2 Known caveats of the LPI

Though the LPI is one of the most popular biodiversity indicators in use, its develop-

ers made deliberate trade-offs in the index’s design that require careful consideration.

First, the LPI standardizes trends in time series as relative rates of change, not abso-

lute population changes. Thus, declines in small populations are viewed as equivalent

to similarly proportioned, larger absolute declines in large populations [47]. As a re-

sult, the LPI should be interpreted as the average trend in population change, not the

average loss in the absolute number of animals [8, 236]. Second, the mathematical

characteristics of exponential population growth demand that the LPI be summarized

using the geometric mean, which is always lower than the arithmetic mean. Thus the

LPI can be disproportionately influenced by even a small number of rapidly declining

populations [129].

There are other known weaknesses of the LPI, many of which stem from the data

quality of the underlying LPD. In addition to the fact that the LPI does not consider in-

vertebrates or plants, the LPD is also biased towards well-studied species groups and

regions. For example, the LPI over-represents temperate regions and under-represents

tropical regions [159]. In addition, perhaps predictably, polar regions are vastly under-

represented in the LPI. In fact, the 2022 LPD contains so few data from the Antarctic

and Arctic that these regions are entirely omitted from most maps in the 2022 LPR [8].

Nonetheless, new data are frequently added to the LPD and these data gaps continue

to shrink with each report [126].

5.1.3 Null models for the LPI

The fact that historical data are being added to the LPD regularly leads to another

well-established inconvenience of the LPI framework: indices reported in LPRs from

different years cannot be compared, since the underlying datasets differ. In describing

this point, the technical supplement of the 2022 LPR notes that the index value in any
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given year should always be compared to the initial year of the trendline, the year

1970, in which the index is set to 1 [236]. For this reason, the LPR assumes that the LPI

for stable populations will remain at 1.

In a recent study, Buschke et al. [32] demonstrated that symmetric population

fluctuations (i.e., caused by demographic or environmental stochasticity, observation

error, or ecological drift), even in populations that are stable on average, can have

unexpected impact on the LPI. Specifically, Buschke et al. [32] found that small ad-

ditive population fluctuations led to a declining LPI despite average population sizes

remaining steady since the logarithmic transformation used to calculate the LPI gener-

ates an asymmetrical response to equal positive and negative fluctuations. The authors

argue that, although the observed declines in the LPI attributed to population fluctu-

ations are small compared to the 69% global decrease reported in the 2022 LPR, the

“null expectation of the LPI should be a declining counterfactual rather than a static

baseline set at 1970" [32]. This study’s findings do not invalidate the LPI as an effec-

tive tool for measuring biodiversity, but instead encourage the use of randomized null

models when considering the significance of LPI trends.

In order to illuminate simply a heretofore unrecognized issue, Buschke et al.’s anal-

ysis [32] only considered the effect of small additive population fluctuations to other-

wise stable populations. However, some animal species display interannual fluctua-

tions that are markedly larger than the variation considered by Buschke et al. [11, 39,

59, 129], including Antarctic penguins of the genus Pygoscelis [218]. Here we continue

and expand on the work started by Buschke et al. [32] to investigate these various is-

sues, which impact the LPI most acutely when interannual fluctuations are large, and

highlight the difficulties in simulating time series with large additive interannual fluc-

tuations that are truly stable on average. We then argue that population fluctuations

are better characterized by treating abundance on a logarithmic scale rather than on a

linear scale (as in Buschke et al. [32]), and discuss the resulting null model for the LPI.
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5.2 Buschke et al.’s approach: Constant additive popula-

tion fluctuations

5.2.1 Original simulations

Buschke et al. [32] simulated how random fluctuations in population time series affect

the empirical global LPI by iterating three null models with positive or negative inter-

annual fluctuations (1, 3, and 5% fluctuations annually). These simulations included

the same number of time series as the 2020 empirical LPI [9], with starting population

counts identical to those in the associated database. Each population time series was

simulated with additive interannual fluctuations equal to a constant percentage of the

original population count:

Nt = Nt−1 ± (N0 ∗ a), (5.5)

where N0 is the initial observed count for the population and a = [1, 3, 5%] is the level

of population fluctuation as a percentage of the initial population count. Thus the

number of individuals (i.e., the quantity being counted, which may be individuals,

breeding pairs, nests, etc.) that the population fluctuates by in each year is constant.

For each time series, the annual direction of the fluctuation was selected randomly

with positive and negative fluctuations being equiprobable. Simulated populations

were allowed to fluctuate annually between the first observed measurement in the

time series to the end of the time series, and then thinned to match the data gaps in the

empirical time series. Importantly, if a simulated population time series had years in

which the generated value of Nt was negative, the entire time series was replaced with

missing data, removing the population entirely from consideration for the calculation

of the LPI for that iteration. The LPI was then calculated as in [159] for each simulation,

with the entire process iterated 100 times for each of the three levels of fluctuation (1,
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3, 5%).

Here, we aim to follow the above methodology of Buschke et al. [32] for a differ-

ent underlying dataset, consisting of 328 time series of all known Chinstrap penguin

(Pygoscelis antarcticus) breeding populations and spanning from 1970-2019, compiled

and organized by the Mapping Application for Penguin Populations and Projected

Dynamics (MAPPPD; [102]). This dataset is used for illustrative purposes and com-

putational ease rather than the much larger LPD used by the authors of the original

study [32]. We use these Chinstrap time series to explore the performance of Buschke

et al.’s LPI null model framework for populations displaying larger interannual fluc-

tuations. Like other penguin species of the genus Pygoscelis, Chinstrap penguins are

known to exhibit high interannual variability in observed population time series (see

Appendix E.1.1; [218]). To allow for the higher interannual fluctuations as seen in

some animal species [39, 59, 129], we consider more levels of fluctuation allowing

a = [1, 3, 5, 7, ..., 31, 33%].

5.2.2 Performance of Buschke et al.’s simulation framework for larger

population fluctuations

Before calculating the LPI for simulated Chinstrap penguin time series, we first explore

the performance of the above simulation framework (Equation 5.5) when population

fluctuations take on a larger range, a = [1, 3, 5, 7, ..., 31, 33%], for a toy example of

500 simulated time series of equal initial population count (following Buschke et al.,

Figure 1 [32]). We set the initial population count to 1000 to represent a medium-

sized Chinstrap penguin colony (the median initial observation in Chinstrap penguin

breeding population time series is 1200 nests).

For populations with large additive interannual fluctuations following the above

framework, simulated population counts can easily become negative when population

fluctuations are more than 5% of the initial population count (Figure 5.1b). Following
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FIGURE 5.1: Simulated population time series with constant population
fluctuations as a (a) small (5%) or (b) large (33%) percentage of the initial
population count. When fluctuations are high (b), simulated population
counts can easily become negative. Buschke et al.’s original framework
[32] replaces time series with negative population counts entirely with
missing data (c), deleting the time series from consideration in any cal-
culation of the LPI. Other options for eliminating negative population
counts include (d) replacing negative counts with zeros and (e) collaps-
ing the time series to zero for all remaining years beginning with the first

negative count.
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Buschke et al.’s framework [32], time series with negative population counts are en-

tirely replaced with missing data, removing those populations from consideration for

the calculation of the LPI (Figure 5.1c). Thus these decreasing populations are deleted

from the collection of time series, but populations that are symmetrically increasing

in the same way remain, leaving populations that are increasing on average instead

of being stable as desired. Figure 5.2 shows the average percent change in popula-

tion count from the initial population of 1000 to the final population count for 500

simulated time series. On average, populations grow by more than 30% under this

simulation framework when population fluctuations are 15% of the initial population

count (simulation framework 1, Figure 5.2). When fluctuations are equal to 30% of the

initial count, populations grow by over 100%. To accurately represent the state of pop-

ulations in the absence of true growth or decline in a null model, populations must be

stable on average. Thus, when population fluctuations are believed to be additive and

above 5%, we must find an alternative simulation framework for use in a null model

for the LPI.

Since this problem (i.e., simulated populations not being stable on average as de-

sired for a null model) stems from simulated time series that drop below zero being

deleted from consideration, we consider other procedures for dealing with simulated

time series with negative population counts. If simulated time series were permitted

to have negative values of Nt, populations would be completely stable on average,

since largely increasing populations would be equally balanced by largely decreas-

ing populations. Since population counts must be nonnegative, however, we instead

consider the case where negative simulated values are replaced with a value of zero.

In this case (Figure 5.1d), time series are not removed from consideration when they

include negative values, but instead they are remedied by replacing those negative

values with zeros. While this framework does reduce the problem of bias in simulated

population time series, populations still grow on average (by up to 27%) when pop-

ulation fluctuations are more than 15% on average (simulation framework 2, Figure
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FIGURE 5.2: Average percent change in population count from the initial
population count after 52 years for varying levels of population fluctu-
ations (a, b, or σe depending on the simulation framework, see Section
5.4.1). Simulation framework 1: Equation 5.5 with time series simulated
to have negative population counts removed (see Figure 5.1c) [32]; Sim-
ulation framework 2: Equation 5.5 with simulated negative population
counts replaced with zeros (see Figure 5.1d); Simulation framework 3:
Equation 5.5 with time series collapsing to zero when simulated popula-
tion counts are negative (see Figure 5.1e); Simulation framework 4: Equa-
tion 5.6; Simulation framework 5: Equation 5.7; Simulation framework 6:

Equation 5.8.

5.2).

Instead of replacing negative simulated population counts with zeros, we can in-

stead collapse time series to zero and make them unable to recover when population

counts reach negative values (Figure 5.1e). Under this framework, populations are

much closer to stable on average, with the average population only growing steadily
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when additive population fluctuations are more than 28% of the initial count (simu-

lation framework 3, Figure 5.2). Thus none of these simulation schemes can generate

populations that are stable on average when additive population fluctuations are be-

lieved to be over 28% of the initial population count.

Note that treating individual negative abundance values in simulated time series

(as in Figure 5.1b) as missing values results in similar challenges when attempting

to generate stable populations on average in addition to creating multiple other con-

founding issues when attempting to calculate the LPI (see Appendix D.1).

5.3 Alternative approaches: Random additive population

fluctuations with a zero-truncated normal distribu-

tion

A straightforward way around the decision between the options in Figure 5.1 might

be to draw population fluctuations from a truncated distribution to avoid simulating

negative population counts in the first place. Population fluctuations drawn from a

zero-truncated normal distribution, instead of being held constant at a percentage of

the initial population count, would never result in simulated time series with negative

population counts. We repeat the above methodology in a separate suite of simu-

lations, with annual population fluctuations for each time series now drawn from a

truncated normal distribution,

Nt ∼ truncN(µ = Nt−1, σ = N0 ∗ a, 0,∞), (5.6)

where a = [1, 3, ..., 33%] is still the level of population fluctuation as a percentage of the

initial population count. (Note the use of N0 ∗ a as the standard deviation of this dis-

tribution; in a non-truncated normal distribution with a standard deviation of N0 ∗ a,
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the probability that the interannual fluctuation in a given year is less than or equal to

N0∗a is 68%, with 95% of fluctuations less than or equal to N0∗2a [18].) Since the zero-

truncated normal distribution will not produce negative simulated population counts,

this simulation framework does not require replacing negative population counts in

any way. However, since fluctuations drawn from a truncated normal distribution

are not symmetric, time series simulated with a zero-truncated normal distribution

grow significantly on average for population fluctuations when a > 5% (simulation

framework 4, Figure 5.2), with problems almost as severe as Buschke et al.’s original

framework that deletes time series that fall below zero at any point (simulation frame-

work 1, Figure 5.2). Thus this simulation framework does not provide a method for

simulating stable populations when additive population fluctuations are high.

5.3.1 Shifting fluctuation benchmarks

We next consider random population fluctuations that are centered on a percentage of

the previous year’s population count instead of the initial population count, repeating

the above simulations with annual population fluctuations for each time series now

drawn from the following truncated normal distribution:

Nt ∼ truncN(µ = Nt−1, σ = Nt−1 ∗ b, 0,∞), (5.7)

where b = [1, 3, ..., 33%] is the level of population fluctuation as a percentage of the

population count in the previous year (not the initial population count). Note that

using the zero-truncated distribution allows us to use this shifting benchmark here

since Nt−1 is guaranteed to be a positive number—a similar shifting benchmark would

not be possible under a simulation framework defined by Equation (5.5).

When interannual fluctuations are drawn from a zero-truncated normal distribu-

tion centered on a percentage of the previous year’s population count, simulated pop-

ulations are roughly stable on average for population fluctuations up to 33% of the
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previous count (simulation framework 5, Figure 5.2). Under this framework, simu-

lated time series that have grown to a point much larger than the initial population

count are more likely to increase or decrease by a large amount in the following year

than they would be if population fluctuations were always benchmarked to the orig-

inal count (as in Equation 5.6). On the other hand, simulated time series that have

fallen close to zero will fluctuate much less on average. Thus time series that undergo

a marked increase in population count have a considerable chance of reverting back

to a level near the initial count, and time series that undergo a marked decrease have

a harder chance recovering to larger counts. On average, simulated time series under

this framework are therefore much closer to stable than those with population fluctu-

ations that remain benchmarked to the initial population count. This marks the most

successful framework for simulating stable on average population time series with

additive population fluctuations that we have discussed here.

With this simulation framework that yielding stable population time series on av-

erage, we next calculate the LPI for simulated Chinstrap penguin breeding colonies

to quantify the null expectation of the LPI for populations undergoing these addi-

tive fluctuations. For 100 iterations, we simulate each of the 328 Chinstrap breeding

abundance time series under the above framework (drawing population counts from a

zero-truncated normal distribution with fluctuations centered on the previous year’s

count, as in Equation 5.7) and calculate the LPI as described above. The resulting

LPI in each case decreases on average over the 100 iterations, with a 96% decrease in

the LPI after 52 years when fluctuations are 33% of the value of the previous count

(Figure 5.3). For small fluctuations (1-5%), similar levels of decline in the LPI were

found to those described in the original study [32] (Figure D.1). With the LPI’s design

meant to accommodate multiplicative population dynamics, positive additive popu-

lation fluctuations (increases) cannot offset negative population fluctuations (declines)

of equal size. The extent of the resulting decline in the LPI is proportional to the level

of population fluctuations experienced by the population time series (Figure 5.3), with
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FIGURE 5.3: Final-year LPI for Chinstrap penguin populations simulated
to be stable on average with drawn from a truncated normal distribution
with varying levels of population fluctuations (b = [1, 3, ..., 33%]). Ran-
dom population fluctuations are benchmarked to the population count in

the previous year (see Equation 5.6).

population fluctuations of more than 20% resulting in a null expectation of the LPI that

is actually lower than the 2022 empirical LPI [8]. Thus, when population time series

are believed to undergo large additive fluctuations in the absence of true growth or

decline, the null expectation of the LPI is a declining counterfactual—and one that is

potentially quite steep. This is a continuation of the trend seen in Buschke et al. [32]

for populations experiencing low additive population fluctuations.
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5.4 Alternative approaches: Random logarithmic popu-

lation fluctuations

As we have shown, simulating time series with large population fluctuations that are

stable on average is difficult when fluctuations are assumed to be additive. When pop-

ulation fluctuations are this large, however, interannual variability is often best under-

stood to exist on the logarithmic scale instead of the linear scale [119, 168, 171, 225]. We

now repeat the above simulations with non-additive random population fluctuations

drawn from a log-normal distribution and present a null model framework for the LPI

with these logarithmic population fluctuations. Specifically, we simulate population

time series fluctuating on the logarithmic (loge) scale as:

log(Nt) ∼ N(log(Nt−1), N0 ∗ σe), (5.8)

where σe is the standard deviation on the loge scale. Bayesian state-space models

for Chinstrap penguin population dynamics [217] have estimated a process error of

σe = 0.33 (see Appendix E.1.1). As such, we use the range σe = 0.01, 0.03, ..., 0.33

here. Since simulating time series on the logarithmic scale ensures that populations

are never negative, we do not have to replace negative values with either missing data

or zeros.

Population time series simulated on the logarithmic scale are stable on average re-

gardless of how large the level of population fluctuation σe (simulation framework 6,

Figure 5.2), with the issues encountered on the linear scale resolved. Thus, when sta-

ble population time series with large interannual fluctuations are required, as for use

in a null model for the LPI, logarithmic population dynamics make their generation

straightforward.

Therefore we next use this simulation framework to calculating the LPI for simu-

lated Chinstrap penguin breeding populations, now with each population time series
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FIGURE 5.4: Final-year LPI for Chinstrap penguin populations simu-
lated to be stable on average with drawn from a log-normal distribution
with varying levels of population fluctuations (σe = 0.01, 0.03, ...0.33, see

Equation 5.8).

following a log-normal distribution as described in Equation (5.8). As above, we cal-

culate the LPI for 100 iterations for each level of population fluctuations. Even when

time series undergo very large population fluctuations on the logarithmic scale, the

value of the LPI after 52 years is close to 1 on average across 100 iterations (Figure 5.4).

Thus, when populations are assumed to vary on the logarithmic scale instead of the

linear scale the null expectation of the LPI is not declining, but instead a virtually stable

line at 1. Since the LPI is designed for use with multiplicative population dynamics,

fluctuations simulated on the logarithmic scale are symmetric in LPI calculations.
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5.4.1 Translating logarithmic fluctuations to the linear scale

It is worth investigating how population fluctuations on the logarithmic scale compare

to those simulated on the linear scale. For a given σe, we can calculate on average how

much a population with multiplicative fluctuations is varying annually on the linear

scale (i.e., the change in raw count). On the loge scale, an increase of 1σe translates to a

(eσe−1)% increase in raw count and a decrease of 1σe translates to a (1−e−σe)% decrease

in raw count. Since these changes are not symmetric on the linear scale, we take the

geometric mean of these two quantities to estimate the percent change in raw count for

a change of 1σe on the logarithmic scale. Using this translation, σe = 0.33 is equal to a

33.1% change in raw count and a σe = 0.01 translates to an approximately 1% change in

raw count. Thus a standard deviation of σe for the log-normal distribution in Equation

(5.8) represents approximately a 100σe% change in population on the linear scale. Since

Chinstrap penguin populations are estimated to have a process error of σe = 0.33,

we have used the ranges a, b = [1, 3, ..., 33%] and σe = [0.01, ..., 0.033] to represent

comparable ranges in population fluctuation levels across simulation frameworks.

5.5 Discussion

The LPI is made up of thousands of populations that each have different levels of un-

derlying population fluctuations due to demographic or environmental stochasticity,

ecological drift, or observation error. Understanding how the LPI is affected by these

random fluctuations when populations are stable on average is crucial to the interpre-

tation of trends in the index. As the framework of the LPI is gaining momentum and

is increasingly being used to quantify population changes in specific taxa [174, 192],

habitats [160], and countries [57, 209], having an accurate and robust null expectation

for index values is critical.

To produce an accurate null model for the LPI, simulated population time series
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should be produced under a framework that closely describes the believed underly-

ing dynamics when populations are neither growing nor declining. Fundamentally,

the time series simulated should be stable on average. As we have shown, many

potential frameworks for simulating populations with additive fluctuations will not

produce stable populations on average when fluctuations are large. Constant additive

population fluctuations greater than 5% of the initial population growth will result

in simulated time series that are growing on average since population counts cannot

be negative. Though there are many choices for how to account for negative simu-

lated values (Figure 5.1), none of them form a simulation framework that yields stable

populations when population fluctuations are additive, constant, and more than 25%

(Figure 5.2). When simulated time series are stable on average, they are suitable for use

in the calculation of a null model for the LPI, but we have shown that this is not always

the case. When population fluctuations are not constant but instead drawn randomly

from a truncated normal distribution, stable populations can only be generated for

interannual fluctuations of more than 5% when those fluctuations are benchmarked

to the previous year’s population instead of the initial count. Only when popula-

tion fluctuations shift their baseline to the previous year’s population count can large

additive fluctuations can be large with simulations still accurately generating stable

populations on average.

Even when populations display sufficiently low interannual fluctuations for a sim-

ulation framework to produce stable populations, it is important to carefully consider

if this null model is accurately representing what practitioners believe to be the null

expectation of population dynamics in the absence of meaningful growth or decline.

We appreciate the light Busckhe et al. brought to this issue with their work [32], as

understanding how the LPI is affected by random population fluctuations is crucial to

the interpretation of trends in the index. We disagree, however, with those authors’ fo-

cus on additive population fluctuations, which may represent a distracting strawman

for evaluating the performance of the LPI. Buschke et al. [32] argue that ecological
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drift, demographic stochasticity, and observation error are additive processes. Under

the assumption of a closed population, however, demographic processes do not result

in a constant number of births or deaths irrespective of the current population count.

Overwhelmingly, ecologists instead model growth, death, and survival as multiplica-

tive processes, resulting in abundances that fluctuate log-normally [119, 168, 171, 225].

For these reasons, the LPI was designed to consider populations undergoing expo-

nential dynamics. When population fluctuations are assumed to be multiplicative, the

resulting null model for the LPI shows no bias (the null expectation of the LPI is, in

effect, a constant line at 1; see Figure 5.4).

Additive fluctuations in observed animal populations would only reasonably model

immigration and emigration, and would thus be very small relative to the population

count. A population with large additive fluctuations would hardly be a closed popu-

lation, and careful consideration would need to be taken if one hoped to include them

as a population in the LPI framework. While populations may experience a combina-

tion of additive and multiplicative fluctuations, any additive population fluctuations

would be outweighed by the fluctuations in the multiplicative birth, death, or survival

rates. As we have shown, even large multiplicative fluctuations do not bias the LPI in

a significant manner, leaving a null expectation for the LPI that is virtually stable at 1

throughout the time series; thus, the LPI is not inherently biased, as may be concluded

by the casual reader of Buschke et al.’s original paper [32].

5.5.1 Consequences of the LPI’s GAM and Buschke et al.’s suggested

reshuffling null model

Buschke et al. [32] also show in their original analysis that the use of a generalized

additive model (GAM) to interpolate and smooth empirical time series leads to biased

LPI estimates when populations are increasing or decreasing non-linearly. In light of

this, the authors suggest another randomized null model in which the starting and
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ending population counts in time series are maintained but the order of the incremen-

tal changes to the population seen in the empirical time series are randomized. Each

resulting final-year LPI value would represent a potential trajectory of the population

to the same measured end-state, averaging out the bias that Buschke et al. [32] identi-

fied when the GAM is fit to nonlinear trajectories.

We completely agree with Buschke et al. [32] that the use of the GAM to interpolate

time series in the context of the LPI is problematic. In fact, given the title of their orig-

inal paper, readers of Buschke et al.’s study may not fully appreciate that the issue lies

with the use of the GAM to interpolate missing data, not with the mathematical frame-

work of the LPI. The GAM has two additional down-stream impacts on the LPI that

were not emphasized in the original study. For one, the GAM is highly sensitive to the

density of the empirical data and even minor changes in the data (particularly at the

beginning and ends of the time series) can have drastic impacts on the final estimated

GAM and the resulting LPI. Secondly, the GAM not only interpolates missing data,

but also smooths the time series where data were observed. This smoothing of the

data leads to a drastic reduction in interannual variation that has a substantive impact

on the resulting index. Since the abundance time series of some species, like Antarctic

penguins, display considerable interannual fluctuations [11, 39, 218], preserving this

variability is critical to understanding their population dynamics and producing an

accurate index of change through time.

We disagree with Buschke et al.’s [32] suggested approach of using a randomized

reshuffling null model to combat the bias introduced by the LPI. Not only does this

reshuffling null model not address the additional problems with the GAM that we

noted above, but—as noted by Buschke et al. themselves [32]—this suggested ap-

proach cannot be used to estimate the trend of the LPI across the whole time series,

and instead requires a narrowing of focus to only the value of the LPI in the final

year of the time series (at the expense of how changes in populations might accrue
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through time). Calculating the full trajectory of the LPI can yield clear epochs of pop-

ulation change that may link to ecological or anthropogenic drivers [47, 136, 174], but

these nuances are lost when reshuffling fluctuations between the beginning and end-

ing abundances. We contend that a better approach would be to simply replace the

GAM with a more mechanistic framework for data interpolation, and suggest a state-

space model (SSM). The use of an SSM [39, 114, 174] addresses all of the above con-

cerns with the GAM without requiring any ad hoc post-processing and preserves the

capacity to look at change within the time series rather than simply at the two end

points. SSMs also allow for a much more informed modeling approach to improve

interpolation of missing data than that provided by a GAM, and easily facilitate the

incorporation of covariates, spatial autocorrelation, or even age-structure. As the LPI

grows in popularity as a biodiversity index for use by policymakers, addressing these

key statistical issues becomes of increasing importance.

It is important that careful consideration is taken when deciding on a null model for

the LPI. If true population fluctuations are unknown or difficult to estimate—or if the

LPI is being calculated for diverse species and resources do not allow for thoughtful

attention to be paid to each one individually—several alternative null models may

be necessary for comparison to interpret true decline or growth. As Buschke et al.’s

work shows and our efforts expand on, the worst choice for a null model for the LPI is

would be failing to develop a null model entirely, since an accurate understanding of

the index first requires a thoughtful examination of the nature of the underlying time

series and their intrinsic stochasticity.
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Chapter 6

Penguindex: A biodiversity indicator

for Pygoscelis species penguins

identifies key eras of population change

6.1 Introduction

As summarized in the most recent Global Biodiversity Outlook from the Convention

on Biological Diversity, none of the 20 Aichi Biodiversity targets set for 2011-2020 were

fully met [50], and the Antarctic, often considered to be buffered from anthropogenic

disturbance, is not fairing any better [42]. The Kunming-Montreal Global Biodiver-

sity Framework agreed to in 2022 includes a new set of goals and targets for which

progress must be measured [51], so quantifying the changes in global biodiversity

remains one of the most important ecological endeavors today. Understanding eco-

logical change is especially urgent for systems in which changes are occurring more

rapidly. Among these is the Antarctic and its Southern Ocean ecosystem, which is

experiencing significant warming and the resulting changes in sea ice distribution,

shifting winds, and increased ocean acidification [123, 175, 188, 228, 227, 241]. These

changes have influenced the intricately connected Southern Ocean food webs in count-

less ways, affecting the success, abundance, and distribution of many species [5, 72,
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234]. It is particularly difficult, however, to assess ecological change in the Antarc-

tic; complications include separating natural variability from shifting regional trends,

inadequate historical and current data on both terrestrial and marine diversity, and

logistical challenges to science in remote regions.

As important marine predators in the Southern Ocean ecosystem, penguins of the

genus Pygoscelis (Adélie penguins, P. adeliae; Chinstrap penguins, P. antarctica; and

Gentoo penguins, P. papua) are critical bellwethers of climate change and, as a result,

serve as an ideal focus for investigations into ecological change in the Antarctic. Over

the last decade, there has been a concerted effort to catalog the distribution and abun-

dance of each of the three Pygoscelis species penguins in the Antarctic (south of 60°S),

including several efforts to use satellite imagery to complete pan-Antarctic popula-

tion censuses for each species [95, 141, 210]. In addition, the completion of the Map-

ping Application for Penguin Populations and Projected Dynamics (MAPPPD; [102])

now provides easy access to all publicly available census data dating back to 1979

[38]. MAPPPD’s release has facilitated a renewed interest in continental scale penguin

dynamics that has uncovered differing trends across pygoscelids in response to cli-

mate change [39, 198]. However, until now, population trends of pygoscelid penguins

have not been synthesized into a single global indicator for use by policymakers. The

need for easy-to-interpret metrics of penguin trends has never been more critical, as

the Antarctic Treaty Parties address threats of the changing climate and increased hu-

man activities, and the Convention on the Conservation of Antarctic Marine Living

Resources (CCAMLR) wrestles with the design (and eventual evaluation) of Marine

Protected Areas [22, 164]. In an effort to meet this urgent need, we introduce here

a pygoscelid penguin-specific biodiversity index, the ‘Penguindex,’ using the frame-

work of the Living Planet Index (LPI).

The LPI, a global biodiversity index produced by the World Wildlife Fund and the

Zoological Society of London, is a major collaborative effort to track trends in verte-

brate abundance around the globe [8]. The index aggregates individual time series
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of vertebrate population measures to track average changes in abundance of species

over time [47, 136, 159]. The biennial Living Planet Report (LPR) uses the LPI to distill

global biodiversity trends into a singular message on the health of our planet. The

2022 LPR describes a 69% average decrease in global biodiversity since 1970 [8]. The

LPI has also been used to identify trends across many taxa, and several country- [150,

209], biome- [75, 160], and taxa-specific [93, 192, 174] sub-indices have been developed

to allow for easy-to-understand monitoring of biodiversity. Our Penguindex leverages

this methodology for pygoscelid penguins, and fills a critical gap in the monitoring of

biodiversity change in the Antarctic.

While penguin population data have been collected and analyzed for decades,

the Antarctic community has not made a concerted effort to integrate those data into

global biodiversity efforts such as the LPI. As a result, the Antarctic is vastly underrep-

resented in the database underlying the global LPI [139], and little attention has been

drawn to how this might influence global patterns. The 2022 LPR acknowledges that

“polar regions . . . showed the highest impact probabilities for climate change, driven

in particular by impacts on birds" (page 41, [8]), but there is no specific mention of

the Antarctic in the report. Though the rate of new Antarctic time series added to the

LPI database has accelerated in recent years [126], the data within MAPPPD has not

been integrated into the LPI database and the LPI’s coverage of Antarctica remains

inadequate.

We present the Penguindex as a pygoscelid-specific LPI and an easily-interpreted

measure of penguin trends in the Antarctic. Including almost every known pygoscelid

breeding site, we first use a Bayesian state-space framework [39] to estimate trends in

the relative abundance for all three pygoscelid species, allowing us to leverage expe-

rience modeling penguin abundance to more accurately interpolate gaps in observed

time series. Using these trends, we calculated the global Penguindex for pygoscelid

penguins by aggregating over each of eight Antarctic regions for each species, calcu-

lating both species-specific indices and region-specific indices for each species along
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the way. In evaluating these trends we also estimate change points—that is, points in

time where an index curve shifts significantly—in an effort to understand the mech-

anisms of these changes. We anticipate that this Penguindex will represent the latest

significant development in the monitoring of these important sentinel species of cli-

mate change.

6.2 Methods

6.2.1 Population time series

Data on nests and chicks for the three pygoscelid species were collected and organized

under the auspices of MAPPPD [102]. We included data from all known breeding

populations with at least one observed abundance count between the 1970/1971 sea-

son (hereafter referred to as the 1970 season) and the 2019 season, totaling 271 Adélie,

358 Chinstrap, and 109 Gentoo penguin populations with a total of 3884 observed

counts. These data were used to fit a Bayesian state-space model to estimate annual

pygoscelid nest abundances for each breeding population from 1970 – 2020. This hi-

erarchical model, adapted from [39], included observation error (uncertainty in the

number of true nests counted in each year) and process error (stochastic variability

in the population growth rate); we modeled the intrinsic rate of growth ri,t, for the

ith population in the tth season as a function of site and season effects. Notably, the

Penguindex does not yet include the Emperor penguin because the data available are

currently too patchy.

6.2.2 Calculating the Penguindex

Data subsetting and Antarctic regions

In calculating the Penguindex, since few abundance counts are available prior to 1979

or for the year 2020 (due to COVID-19), we restrict our calculation to the 1980-2019
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seasons. While the Bayesian state space model provides estimates for all years for all

populations, here we follow the criteria for inclusion of time series in the global LPI

[47] and discard from consideration those populations with fewer than two observed

abundance counts from 1980 to 2019. This filtering results in 118 Adélie penguin, 94

Chinstrap penguin, and 58 Gentoo penguin populations with fully interpolated time

series from which to calculate the Penguindex. Following the LPI framework [47], one

percent of the mean population for the whole time series was added to years in time

series for which the Bayesian state space model assigned a population value of zero

(as was the case for populations with confirmed absence for that species) in any year.

Each breeding population is assigned a geographical region of the Antarctic: (1)

Central-west Antarctic Peninsula (AP) and Northwest AP; (2) Southwest AP; (3) Ele-

phant Island, South Orkney Islands, and South Shetland Islands; (4) Northeast AP;

(5) Ross Sea (CCAMLR Subareas 88.1 and 88.2); (6) Bellingshausen Sea (CCAMLR

Subarea 88.3); (7) Northeast Antarctica (CCAMLR Division 58.4.1); and (8) South-

east Antarctica (CCAMLR Division 58.4.2). The locations of the breeding populations

for each species are shown, differentiated by region, in Appendix S1: Figures S1-S3.

Adélie penguins are found in all eight regions but Chinstraps breed only in Regions

1-3 and 5, and Gentoos in Regions 1, 3, and 4.

Calculation of index values

The Penguindex is calculated following the general format of the LPI [47, 159] (see Ap-

pendix S1: Figure S4). The global pygoscelid index is calculated by aggregating over

all three species, each of which is first aggregated over each region. For each breeding

population, the annual rate of change dt is the logarithm of the growth rate in a given

year t, dt = log10(Nt/Nt−1), where Nt denotes a draw from the posterior for nest abun-

dance in year t as estimated from the Bayesian state-space model. Drawing from the

posterior allows us to propagate the uncertainty regarding abundance in years t and
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t − 1 to the estimate of dt. For each year t, the values of dt for each breeding popula-

tion in a region is then averaged within each species × region combination, with each

breeding population weighted equally, yielding a region-and-species-specific estimate

of dt for each year. These region-specific interannual changes were then aggregated to

obtain a single annual rate of change for each species, with each region’s interannual

change weighted by the proportion of the total number of that species’ breeding popu-

lations that occur in that region. Annual trends for each species were then aggregated

to obtain a single global annual rate of change for all pygoscelid species, d̄t. All three

pygoscelid species were weighted equally for this aggregation. Each of these regional,

species, and global trends were then converted to index values, It = It−1 × 10d̄t , with

It=1 = 1 for the reference year 1980. Indices are calculated for each of 1,000 draws from

the posterior distributions of nest abundance estimates from the Bayesian state-space

model. These analyses were performed using R v4.1.2 [180].

Penguindex null models

Random fluctuations in time series, even when overall population trends are stable,

can disproportionately affect the LPI relative to actual trends [31]. Additionally, the

population dynamics of Pygoscelis penguins are characterized by large interannual

fluctuations [39, 240]. To account for this potential bias in the Penguindex, we used a

null model that maintained the starting populations in each time series and simulated

stable dynamics with random fluctuations. For each species, the posterior mean for

the species-specific process error σ was used and the abundance of population i in

year t, Nsimi,t
was simulated as:

log(Nsimi,t
) ∼ normal(µi,t = log(Nsimi,t−1

), σ2
spp) (6.1)

where Nsimi,t=1
is drawn from the posterior distribution for nest abundance for popu-

lation i in year t = 1980 as estimated from the Bayesian state-space model. For Adélie
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penguins, the process error σ depends on the region. These null model time series are

then used to calculate the Penguindex as described above. We iterate this null model

1,000 times and average the index over all iterations, obtaining a null index for each re-

gion, species, global index as above. This index can then be used as a null expectation

of the Penguindex rather than the static baseline of I1980 = 1.

Era identification

Change points in the Penguindex were identified via segmented regression [166] to

find years at which the linear trend of the index changed significantly. This change

point analysis allowed us to establish eras of pygoscelid population dynamics between

1980 and 2019. Change points were identified for the global Pygoscelis Penguindex as

well as for each species- and region-level indices. These analyses were performed

using R v4.1.2 [180] and the package segmented [167]. The Bayesian information

criterion (BIC) was used to select the number change points between 0 and 10 [222].

The maximum number of change points allowed in this procedure was set to 10 since

the optimal number of change points never reached the limit of 10 for any index.

6.3 Results

6.3.1 Global Pygoscelis trends

On average, Pygoscelis penguin populations have grown by 16.9% (95% credible inter-

val, 12.8-21.1%) between 1980 and 2019 (Figure 6.1). Our data suggest an initial surge

of growth prior to 1986 (1986 index 1.098, 95% CI = 1.058-1.135), followed by a period

of global stability until 1996 (1996 index 1.095, 95% CI = 1.055-1.140); global Pygoscelis

penguin populations steadily grew between 1996 and 2015 (2015 index 1.206, 95% CI

= 1.166-1.249), after which the average population declined suddenly. The null model

for the global Pygoscelis Penguindex stayed steady at 1.0.
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FIGURE 6.1: Penguindex for global Pygoscelis penguin populations from
1980-2019. The black line denotes the mean, the white lines the 95% cred-
ible intervals, and the gray lines each iteration. Identified change points
occur in 1986, 1996, and 2015. The blue line denotes the null model index.

6.3.2 Global species-level trends

The global Pygoscelis Penguindex can be disaggregated by species to identify species-

specific trends. On average, Adélie penguin populations were mostly stable globally

between 1980 and 2019 (Figure 6.2a). Following the global trend for all pygoscelid

species, Adélie penguin population abundance increased between 1980-1986, with the

index maximum around this time representing a 5.8% increase in the average popu-

lation (95% CI = 4.0-7.6%). Between 1986 and 1990, the global Adélie index declined

quickly (1990 index 1.031, 95% CI = 1.014-1.049), followed by a period of relative sta-

bility until 2005 (2005 index 1.035, 95% CI = 1.019-1.050). This was followed by another

period of rapid decline until 2010 during which the average Adélie penguin popula-

tion returned to the 1980 baseline (2010 index 0.997, 95% CI = 0.981-1.013). Between
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2010 and 2019, the global Adélie Penguindex remained approximately stable (2019

index 0.994, 95% CI = 0.975-1.014).

Global Chinstrap penguin populations decreased on average by 21.4% (95% CI =

17.1-25.8%) between 1980 and 2019 (Figure 6.2b). While Chinstrap penguin popula-

tions declined the most on average globally, declines were not constant, with trends

in the global Chinstrap Penguindex displaying the largest number of distinct eras of

change compared with the other two Pygoscelis species. An initial period of slow

growth between 1980-1983 (1983 index 1.015, 95% CI = 0.971-1.060) was followed by

one of sharper growth until 1985 (1985 index 1.100, 95% CI = 1.051-1.152). Between

1985 and 1991, the global Chinstrap index declined back to baseline and then fell be-

low baseline (1991 index 0.988, 95% CI = 0.943-1.038). Two eras of slower decline were

identified between 1991 and 2013 (2013 index 0.843, 95% CI = 0.800-0.889). Between

the 2013 and 2014 seasons, global Chinstrap penguin populations increased by 3%

of baseline (2014 index 0.867, 95% CI = 0.823-0.910), before declining quickly to their

lowest point in 2019 (2019 index 0.785, 95% CI = 0.742-0.829).

Conversely, Gentoo penguin breeding populations increased by 105.0% (95% CI

87.2-125.5%) globally between 1980-2019 (Figure 6.2c). Prior to 2001, the average Gen-

too penguin population increased by 46.6% (95% CI = 43.5-60.7%). This period of

growth was followed by a shorter period of even more rapid growth between 2001-

2015 (2015 index 2.067, 95% CI = 1.894-2.250). Notably, however, the average Gentoo

penguin population was almost completely stagnant between 2015-2019 (2019 index

2.050, 95% CI = 1.872-2.255). Null models for all species-level indices remained stable

at 1.0 through 2019.
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FIGURE 6.2: Species-level Penguindex for global (a) Adélie, (b) Chinstrap,
and (c) Gentoo penguin populations from 1980-2019. Each black line de-
notes the mean, the white lines the 95% credible intervals, and the gray
lines each iteration. Each blue line denotes the null model index. Identi-

fied change points are reported in Appendix S2: Table S1.
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6.3.3 Species-specific regional trends

Regional Adélie trends

Species trends disaggregated by region show differing patterns across the Antarctic

(Figures 6.3 and 6.4). Note in Figures 6.3 and 6.4 we choose a layout to emphasize

differences between species; a geographic comparison for each species is presented in

Appendix S2: Figures S1-S3. The Ross Sea (Region 5) contains the largest number of

Adélie penguin breeding colonies (37 populations; Figure 6.3e). Change point anal-

ysis identified three major eras of change for these populations, with an initial surge

of growth between 1980-1987 leading to an average increase in abundance of 80.8%

(95% CI = 57.7-107.0%) of the 1980 baseline. This was followed by a shorter period

of rapid decline until 1990 (1990 index 1.098, 95% CI = 0.951-1.259). The period from

1990-2019 displayed large fluctuations, with the overall trend being positive (2019 in-

dex 1.510, 95% CI = 1.252-1.789; null model index 1.019). Adélie populations in Eastern

Antarctica also increased on average between 1980 and 2019. In Northeastern Antarc-

tica (12 populations; Region 7, Figure 6.4b), Adélie populations increased by 291.9%

(95% CI = 106.3-576.4%; the null model increased by 4.9%) on average between 1980-

2019, though a period of rapid decline was observed between 2004-2010 (2004 index

4.276, 95% CI 2.532-6.464; 2010 index 2.676, 95% CI 1.624-4.151). Adélie populations in

Southeastern Antarctica (19 populations; Region 8, Figure 6.4c) increased on average

by 164.8% (95% CI = 70.7-296.9%; the null model increased by 2.6%) over the 40-year

time series, though the average population peaked at 472.1% (95% CI 308.1-678.2%) of

the 1980 baseline in 2004 before declining rapidly between 2004-2009 (2009 index 2.67,

95% CI 1.876-3.670). Between 2009-2019, Adélie populations in Southeastern Antarc-

tica remained approximately stable on average.

Adélie breeding populations on Elephant Island, South Orkney Islands, and South

Shetland Islands (19 populations; Region 3, Figure 6.3c) declined on average 76.2%

between 1980-2019 (95% CI = 63.7-85.5%; the null model increased by 7.1%) after an
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