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Abstract of the Dissertation 

Spatial dynamics of Pygoscelis penguin coloniality 

by 

Philip McDowall 

Doctor of Philosophy 

in 

Ecology and Evolution 

Stony Brook University 

2018 

Organisms typically inhabit a two-dimensional manifold embedded in three-dimensional 

space, but the spatial methods that we use to study them are often applied to projections in lower 

dimensional spaces. Additionally, the resolution of datasets used to understand the space-use 

preferences and spatial dynamics of organisms is often dictated by data availability rather than 

suitability to the primary research question.  I provide a novel method of collecting very high 

spatial-resolution data, which captures the three-dimensional (3D) structure of terrain and the 

organisms that inhabit it simultaneously. I explore the implications of projections to lower 

dimensional spaces on bias in statistical techniques, demonstrating that failure to account for 3D 

structure can lead to incorrect type I error rates in null hypothesis testing. Using these high-

resolution 3D data collection tools, I study the spatial dynamics of nesting Pygoscelis penguins, 

modeling the effects of both terrain and conspecific interactions on choice of nest location. Using 

an individual-based model, I demonstrate that nest site fidelity in a stochastically changing 

population can lead to fragmentation of a colony, which feed back into population level changes 

through high predation rates at the edges of colonies. Finally, I demonstrate a novel method for 

collecting spectral data from an Unmanned Aerial System (or ‘drone’), which provides a better 

understanding of how 3D structure relates to function in ecological systems. 
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Introduction 

Ecological systems exist in a three-dimensional physical space, and evolve over the 

fourth dimension representing time. Organisms that fly or swim live in a three-dimensional 

world, but most organisms inhabit a two-dimensional manifold embedded in three-dimensional 

space. In this research, which is largely focused on the ecology of the Pygoscelis penguins, I 

study the spatial dynamics of nesting penguins and examine the role of conspecific attraction and 

fine scale habitat preferences. To address these complex topics, I develop novel methods for 

spatial ecology based on recent technological advances in computer vision, satellite imagery, and 

unmanned aerial systems. These methods allow us to collect spatial data in three dimensions at 

very high resolutions. By applying these techniques to nesting Pygoscelis penguins, I explore 

how we can link spatial pattern to ecological and behavioral processes to better understand how 

spatial dynamics influence penguin population dynamics. Further, I explore two scenarios in 

which the projection of a high-dimensional system to lower dimensions can be misleading. I 

show that the naive projection of three-dimensional space (x,y,z) to two dimensions (x,y) by 

simply dropping the z-coordinate can bias our estimates of spatial point patterning and, 

consequently, our understanding of animal interactions and habitat preferences. I also show that 

the projection from four-dimensional spatiotemporal state (x,y,z,t) to a one-dimensional (t) time 

series of abundance may mask important ecological processes and reduce our ability to forecast 

abundance into the future. 
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The Pygoscelis penguins 

 

For nine months of the year, individual Pygoscelis spp. penguins are widely dispersed, 

foraging across large distances at the edges of the Antarctic sea ice. However, during the short 

austral spring and summer breeding season, these birds congregate in densely packed colonies 

that may range in size from tens of birds up to hundreds of thousands (Ainley 2002). While at the 

colony, pairs build and maintain stone nests in which two eggs are laid. Parents share the task of 

incubation and chick rearing, before eventually leaving the chicks to crèche. Individual birds 

display a high level of site-fidelity often returning to the same nest location year after year, and 

rarely moving between colonies. 

Pygoscelis colonies represent a self-organizing aggregation of independently acting 

individuals. Such aggregations are overwhelmingly common in nesting marine birds, with over 

95% of species adopting this breeding strategy (Wittenberger 1985). Despite the prevalence of 

this breeding strategy, its role, evolution, and implications are not fully understood. Individuals 

are likely to experience density-related costs to fitness through resource sharing, both in terms of 

nest site availability and resource availability within the limited foraging range that is utilized 

during breeding (Ainley et al. 1995). Additionally, nesting in close proximity to conspecifics is 

likely to cause higher rates of parasite transmission (Tella 2002, Brown and Brown 2004) and 

may result in increased presence of predators who are attracted to these large aggregations 

(Emslie et al. 1995), all of which carry additional costs for the fitness of an individual. Despite 

these probable costs, this breeding strategy is almost ubiquitous in marine birds and, as such, it is 

likely that the benefits outweigh the costs. 

The most obvious reason for the coloniality of Pygoscelis penguins lies in the predator 

defense that is achieved by being in a group. Group defense against predation has often been 
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cited as a reason for colonial existence, with increased predation observed on the peripheries of 

colonies of many Antarctic bird species (Weidinger 1998). The most prolific predators of the 

Pygoscelis penguins are the South-Polar Skua (Stercorarius maccormicki), and Brown Skua 

(Stercorarius antarcticus) (Young 2005). While a lone penguin may be unable to defend its nest 

from a pair of Skuas, a group of penguins acting together can collectively dissuade the Skua 

from attacking. There are differing opinions on the strength of edge effects in Pygoscelis 

penguins, although there appears to be a consensus that predation rates are higher, and therefore 

reproductive success lower, on the peripheries of a colony (Barbosa et al. 1997). Attacks from 

Skuas may come either from the ground or from the air but are, in either case, more likely to be 

successful when attacking nests on the edges of a colony (Young 2005). Observational studies 

have reported a risk of predation for birds nesting on the margins of a colony that is 4-8 times 

higher than for those birds nesting at the interior (Emslie et al. 1995). Interior nesting sites may 

also be preferable to those on the margins of the colony due to different rates of disturbance 

(Tenaza 1971).  

While collaborative defense gives a rationale for the existence of colonial breeding, it 

also raises some interesting questions. For one, it implies that the costs and benefits of 

coloniality are not shared equally by all individuals within a colony and are in fact likely to be 

highly spatially structured, such that those individuals nesting in interior nests have much 

reduced costs compared to those on the exterior. This suggests that the correct unit for 

consideration in density-dependent effects is the sub-colony (smaller groups of contiguously 

nesting birds) rather than the colony as a whole, which is the spatial unit at which population 

dynamics have usually been considered. Secondly, the fitness of an individual cannot be based 

upon the decisions that they make alone and must be a result of the decisions made by all other 
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individuals within an aggregation. We frequently assume that individuals in populations adopt 

behavioral strategies that maximize their fitness. However, when there are interactions between 

organisms, the optimal strategy for one individual is often a function of the strategy selected by 

the other individuals, whose strategy is, in turn, a reaction to the strategies adopted by all other 

individuals 

 

Coloniality 

 

Coloniality is a challenging area to study as the processes involved in coloniality operate 

at a wide range of spatial scales. At the largest scales, resource availability is likely to drive the 

location of colonies. However, there are also processes that occur within the colony, often down 

to the sub-meter scale. While low resolution, high spatial coverage data has been available for 

the consideration of the largest spatial scale processes, and has demonstrated that factors such as 

sea surface temperatures are important in dictating the locations of colonies (Cimino et al. 2013), 

the data required to address within-colony processes have been lacking. 

Traditionally, the census of nesting Pygocelis populations has involved the manual 

counting of individual nests in the field, resulting in a one-dimensional time series of abundance 

for each accessible colony. Due to the logistical difficulties of working in the Antarctic, these 

datasets are often patchy, with some sites having many years of missing data between completed 

surveys. This manual counting methodology has been supplemented using remotely-sensed data, 

which allows us to overcome some of the logistical difficulties of working in the field, but until 

recently has required us to accept less precise estimates of abundance (LaRue et al. 2014). 

Advances in remote sensing technology and changes in legislation have led to the availability of 
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imagery at sub-meter resolutions, allowing us to refine data on both the locations of nesting sites, 

our estimates of colony size, and improve the spatial covariates that are available to build models 

of spatial usage. This high-resolution imagery has demonstrated that Pygoscelis colonies are 

highly spatially structured, with sub-colonies forming patterns of spots and stripes and labyrinths 

across the terrain (See Fig. 3-1, Chapter 3). Given the spatial structuring of the benefits of 

coloniality, we might expect that these colonies should take on more regular shapes that 

minimize the proportion of nests that occur on the peripheries and maximize the number of birds 

with relatively safe interior nest locations. To understand the processes driving the observed 

spatial pattern, and the mechanisms by which these patterns feed back into the biological 

processes controlling abundance, we need to understand the dynamics of the colony at the level 

of the individual. Unfortunately, the improved resolution available with the current generation of 

satellites is still at a courser scale than the world as perceived by an individual bird and so does 

not provide the individual-level information required to answer questions about the interactions 

occurring between individuals within an aggregation.  

Thesis summary 

 

  In Chapter 1 of this thesis, I present a novel application of a computer vision technique, 

Structure-from-Motion (SfM), which allows us to collect centimeter-scale data on the 

topography of a landscape and the individuals within that landscape. This method allows the 

collection of occupancy and topography datasets simultaneously, ensuring no temporal or spatial 

mismatch between the topographic dataset and the locations of the individuals. SfM algorithms 

are based on triangulating matched points between sets of overlapping images, allowing the 

estimation of three-dimensional structure from two-dimensional image sequences. This method 

differs from stereo-matching algorithms traditionally used to create DEMs, and from more 
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common photogrammetric methods, in that the camera position and scene geometry are solved 

simultaneously, negating the need for data on camera position, or three-dimensional control 

points. This is achieved using algorithms that track multiple correspondences between multiple 

overlapping, offset images. While the three-dimensional model that is created is scaleless and 

arbitrarily orientated the addition of supplementary information such as known positions within 

the scene or the locations of the cameras in a real-world coordinate system, allows us to 

reconstruct a scaled, georectified three-dimensional model of the scene.   

When SfM is combined with the capabilities of modern Unmanned Aerial Systems 

(UAS), we have a tool to rapidly census large populations of nesting birds and to collect spatial 

data that is simultaneously very high resolution and able to cover an entire colony that may span 

hundreds of hectares. However, with the increased resolution of these datasets available through 

UAS surveys, we may encounter statistical issues which, at the courser scales we have been used 

to, have not previously been considered.  

In Chapter 2 of this thesis, I focus on the statistical biases introduced when projecting 

location data using the common but incorrect projection of a three-dimensional (3D) dataset to 

the two-dimensional (2D) plane. There are a range of tools that we might use to model the 

presence/absence, abundance, or density of a species, but many of these models represent 

variations on the Poisson point process model (Renner and Warton 2013). Tools for applying 

point process models (and their derivatives) to one- and two-dimensional datasets are well 

developed, and there are numerous ways to estimate the parameters of such a model (Cressie 

1993, Lieshout and Baddeley 1996, Baddeley and Turner 2005). However, when we deal with 

ecological datasets in lower dimensional space, we have assumed that the projection from the 3D 

world to a 2D coordinate system is a valid one and does not introduce bias. This step of re-
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projection to a lower dimensional space is often made implicitly, without the realization that it is 

occurring, or that it may introduce significant bias in subsequent analysis. We tend to collect data 

on the location of species in some two-dimensional coordinate system, either as the latitude or 

longitude at which the observation was made, or in a coordinate system defined specifically for a 

study in which individual records are the position, in x-y coordinates, of the observation. The act 

of recording these observations as a pair of coordinates is an orthographic projection of the real 

locations in three-dimensional space into a two-dimensional space. In Chapter 2, I demonstrate 

that when point processes occur on a two-dimensional manifold embedded in three-dimensional 

space, simple geometric considerations imply that the orthographic projection does not maintain 

the key parts of the spatial pattern that are used in point process modelling, resulting in biased 

estimates that are most significant in landscapes in which there is large variance in the slope of 

terrain.  

In the subsequent chapters of this thesis, I study the mechanisms that drive pattern 

formation in penguin colonies, using a dataset created using SfM applied to high-resolution UAV 

imagery captured at Beagle Island, in the Danger Islands chain at the northern extent of the 

Western Antarctic Peninsula. Due to the spatial structuring of predation risks within a colony, we 

may expect colonies to be arranged in such a way as to minimize the number of individuals on 

the peripheries. In the absence of other factors, we expect colonies should be contiguous and 

roughly circular. However, real colonies are highly spatially structured and often consist of many 

small “sub-colony” units. Complicating the spatial dynamics of penguin colonies is the 

underlying terrain on which these colonies are built, which controls habitat suitability 

independent of conspecifics and would, a priori, be expected to influence the distribution of 

penguin nests within the colony. The locations of individual nests reflect, therefore, a 
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convolution of preference for particular terrain and a desire to nest in proximity to conspecifics. I 

use a Bayesian auto-logistic model (Besag 1972) to estimate the strength of each of these 

components of nest site selection, allowing us to separate abiotic and biotic processes in nest site 

selection. Given this information I can then consider whether the patterns we see in the field 

might represent an optimal arrangement in a spatially structured landscape. In Chapter 3, I apply 

a meta-heuristic approach, simulated annealing (Van Laarhoven and Aarts 1987) to artificially 

optimize the locations of penguins on this landscape to demonstrate that the current arrangement 

observed at Beagle Island is in fact sub-optimal. This technique demonstrates an important point 

for the spatial dynamics of penguin nest locations within a colony; a high level of nest site 

fidelity in Pygoscelis penguins means that the arrangements of individuals in each year is highly 

dependent on the previous year’s arrangement. These rearrangements must occur at the 

individual level, with no coordination between individuals, and as such there is little scope for 

the population to reorganize to an optimal arrangement. As I discuss in Chapter 3, there may 

even be ‘stable’ configurations of nests in which no individual acting alone can improve their 

position, forming an analog of the Nash Equilibrium from game theory (Nash 1951). The fact 

that the sub-optimal condition of the colony in revealed in a static snapshot of time is in a sub-

optimal condition raises the questions of how the colonies end up in this state, and what the 

implications of this sub-optimality and iterative rearrangement of the configuration are for the 

population. 

In Chapter 4, I attempt to address these questions by constructing a dynamic individual-

based model to simulate how penguin colonies grow and decline over time, how spatial pattern 

might emerge and what the implications of this spatial patterning might be for the population. 

Individual-based models are well suited to the task of modelling local interactions between 
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individuals and exploring properties that might emerge at the system level as a consequence of 

these interactions (DeAngelis and Grimm 2014). In this model, I provide each individual with a 

simple set of rules about when to move, where to move to, and the probability of breeding 

success in a given location. From these simulations we see that the spatial patterns observed in 

Pygoscelis colonies are most likely formed during periods of population decline. As there is a lag 

in an individual’s ability to respond to a changing landscape of conspecifics, these declines tend 

to form holes (areas not occupied by nesting penguins) in otherwise contiguous colonies that can 

fragment colonies into smaller disconnected sub-colony units. These declines increase the 

number of individuals nesting on the periphery, which in turn reduces the average reproductive 

success of the colony. By measuring the responses of simulated colonies in different 

configurations to perturbation, we observe that the rate at which populations recover to their 

original size is a function of the level of aggregation of the original population, with more 

fragmented colonies recovering more slowly. This slowed recovery is often regarded as signal of 

an impending ‘critical collapse’ (Dakos et al. 2011, Scheffer et al. 2012), in which a population 

suddenly declines to extinction. The ability to create such dynamics in this four-dimensional 

system represent yet another weakness of projection to a lower dimensional space. When 

colonies are considered as a one-dimensional system in which change in the population at time 

t+1 is a function of only the population at time t, we are discarding the additional dimensions of 

spatial configuration. As a result, we may not anticipate such critical transitions. Importantly, the 

assumption that population trends act as a Markov Chain, with simple probabilistic transitions, is 

violated. The spatial configuration and state of a colony is very much dependent upon the history 

of that colony and its previous configurations. I find that the spatial properties of a colony are 
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highly correlated with its population trajectory over a period of around a decade, and that high 

levels of fragmentation result from periods of decline. 

In the final chapter of this thesis, I explore how ecologists can leverage the increasing 

capabilities, and rapidly decreasing cost, of unmanned aerial systems (UASs). These systems are 

now able to carry a variety of sensing instruments such as high-resolution cameras and 

spectrometers to collect additional data which, when integrated into full three-dimensional 

scenes, allows us to greatly increase the scale and resolution of the questions that we can answer. 

I demonstrate this through the application of a novel method for combining 3D scene 

reconstruction and readings collected using a high-resolution non-imaging spectrometer that 

allow us to explore how structure and function are interconnected.  
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Chapter 1 - Ultra-Fine Scale Spatially-Integrated Mapping of Habitat and Occupancy 

Using Structure-From-Motion1 

 

Abstract 

Organisms respond to and often simultaneously modify their environment. While these 

interactions are apparent at the landscape extent, the driving mechanisms often occur at very fine 

spatial scales. Structure-from-Motion (SfM), a computer vision technique, allows the 

simultaneous mapping of organisms and fine scale habitat, and will greatly improve our 

understanding of habitat suitability, ecophysiology, and the bi-directional relationship between 

geomorphology and habitat use. SfM can be used to create high-resolution (centimeter-scale) 

three-dimensional (3D) habitat models at low cost. These models can capture the abiotic 

conditions formed by terrain and simultaneously record the position of individual organisms 

within that terrain. While coloniality is common in seabird species, we have a poor 

understanding of the extent to which dense breeding aggregations are driven by fine-scale active 

aggregation or limited suitable habitat. We demonstrate the use of SfM for fine-scale habitat 

suitability by reconstructing the locations of nests in a gentoo penguin colony and fitting models 

that explicitly account for conspecific attraction. The resulting digital elevation models (DEMs) 

are used as covariates in an inhomogeneous hybrid point process model. We find that gentoo 

                                                 
1 McDowall, Philip, and Heather J. Lynch. "Ultra-Fine Scale Spatially-Integrated Mapping of Habitat and 

Occupancy Using Structure-From-Motion." PLoS ONE 12.1 (2017): e0166773. 

 

Author Contributions: (PM – Philip McDowall, HJL – Heather Lynch) Conceptualization: PM. Data curation: PM. 

Formal analysis: PM.  Methodology: PM HJL. Project administration: HJL. Supervision: HJL. Validation: PM. 

Visualization: PM HJL. Writing – original draft: PM HJL. Writing – review & editing: PM HJL. 

Thanks to Tom Hart and penguinlifelines.org for the images used in this analysis, and Ben Weinstein, Catherine 

Graham, Cecilia O’Leary and Casey Youngflesh for discussions regarding this manuscript. 

Funding provided by the National Science Foundation Office of Polar Programs (NSF/OPP-1255058). 
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penguin nest site selection is a function of the topography of the landscape, but that nests are far 

more aggregated than would be expected based on terrain alone, suggesting a strong role of 

behavioral aggregation in driving coloniality in this species. This integrated mapping of 

organisms and fine scale habitat will greatly improve our understanding of fine-scale habitat 

suitability, ecophysiology, and the complex bi-directional relationship between geomorphology 

and habitat use.  

 

Introduction 

Habitat suitability models for plants and animals often focus on course-grained abiotic 

habitat characteristics at the expense of microhabitat factors and/or biotic interactions that can 

also be important for structuring the use of space (Guisan and Thuiller 2005, Campomizzi et al. 

2008). Despite their ubiquity and importance for spatial ecology, the scale and extent of data 

used to explore relationships between organisms and the space they occupy are often dictated by 

the availability of environmental data rather than the ecology and physiology of the organism 

under consideration (Jones 2001). Moreover, since data on environmental conditions and the 

presence/absence of the organism are usually recorded independently, there can be considerable 

spatial and temporal alignment errors between data types, making it difficult to infer the true 

relationship between them (Guisan and Thuiller 2005, Barry and Elith 2006). Issues of scale or 

spatiotemporal registration errors are relatively minor when key environmental covariates vary 

slowly (e.g., elevation) or when the spatial scale of occupancy is large (e.g., an island), but they 

can be highly problematic when modeling habitat suitability or space use at much smaller spatial 
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scales, where occupancy may hinge on the detailed hydrology of the site or subtle variations in 

exposure to wind scour or solar irradiation (Bennie et al. 2008).  

Microclimate is likely to be critical in driving occupancy and abundance of a range of 

plants and animals because the environment as experienced by an individual can be very 

different from the average background condition measured at much larger spatial scales (Suggitt 

et al. 2011). When high-resolution topographic maps are combined with climatic modeling, we 

may begin to detect fine scale variations that drive habitat associations. Seabra et al. (Seabra et 

al. 2011) demonstrated that limpets at equal tidal heights and separated by less than two meters 

may experience significantly different incident solar radiation depending on which side of a rock 

they inhabit. The micro-scale differences in resulting temperature, which can be critical for the 

organisms as they perceive their environment, are far smaller than could be mapped using 

traditional air or water temperature datasets derived from satellite-based sensors. Terrestrial 

ecology also provides many such examples; different species of Anoline lizard occupy distinct 

microhabitats based on shade availability (Rand 1964), the distribution of saxicolous lichens in 

the Rocky Mountains appear to be driven by fine scale variability in snow cover across the faces 

of boulders (John 1990), and thermally constrained butterflies select topographically-driven 

microhabitat based on fine scale variations in temperature (Lawson et al. 2014). Topography can 

shape microclimate and provide fine-scale habitat that falls within the physiological tolerances of 

a species in an otherwise apparently unsuitable landscape. While these microhabitat drivers may 

not be as valuable as regional scale variables in predicting occupancy over large geographic 

ranges, they may be key to understanding small-scale interactions that structure the use of space 

by animals, and may improve model performance when used in conjunction with these regional 

variables (Mcclure et al. 2012, Tattoni et al. 2012).  
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Biotic interactions can also influence how animals and plants use space, making it 

difficult to infer the strength of abiotic habitat associations. Positive associations between 

conspecifics, either caused by active behavioral aggregation such as colonial breeding or the 

more passive dispersal limitations often seen in plant distributions, should lead to an increased 

density of individuals. Alternatively, negative associations, such as competition for resources, 

territorial behavior, or allelopathy should result in lower densities of individuals that are more 

regularly spaced across the landscape. When these biotic interactions are excluded from habitat 

suitability models, we risk erroneously assigning this variance to some landscape factor, and may 

find that our models perform poorly at predicting the spatial distribution of a species 

(Campomizzi et al. 2008). Similarly, if we do not explicitly include abiotic landscape 

heterogeneity into models of aggregation then we may incorrectly attribute patterns of 

aggregation to complex biotic interactions.  

 The use of topography as an explanatory variable in distribution modeling has a long 

history in the field of gradient analysis, whereby the abundance of a plant species is related to 

environmental gradients such as elevation. While most gradient analysis studies focus on the 

landscape scale, important fine scale details can be lost when data are collected at such large 

scales (Lookingbill and Urban 2005) as small scale heterogeneity in the landscape has been 

shown to promote species richness and beta diversity in plant communities (Opedal et al. 2015). 

In addition to information lost due to inappropriate scale, ecological datasets almost always 

project a three-dimensional landscape onto a two-dimensional raster, preventing a complete 

consideration of covariates that require a three-dimensional understanding of habitat (e.g., 

terrain, canopy structure, etc.) (Opedal et al. 2015). The additional information provided by 

digital elevation models (DEMs) can often be used as proxies for environmental condition and 
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permit direct modeling of many processes, such as hydrological flow, critical to a site's 

suitability. To fully understand the spatial ecology of a species, it is important to map both 

organisms and the fine scale three-dimensional details of their landscape simultaneously. These 

maps, which we refer to as ‘integrated’ terrain and occupancy maps, are likely to be useful across 

a range of applications including ecology, ecophysiology, and biogeomorphology. 

 

Mapping fine-scale terrain 

 

One of the basic structuring elements of habitat is elevation, however the resolution of 

available elevation data is highly variable across the globe. Within the United States, the USGS 

National Elevation Dataset provides low-resolution elevation data with relatively high spatial 

coverage, and a smaller number of high-resolution data products derived from aerial 

photogrammetry (with horizontal resolution up to 3 m). While similar data sets are available 

from several national agencies and commercial providers, global coverage is limited and high-

quality data are often hard to find and/or may be prohibitively expensive. Many of the more 

readily available products are derived from sources such as RadarSat and yield elevation datasets 

with horizontal resolutions in the range of hundreds or even thousands of meters. At these scales 

it is unlikely that recorded environmental variables accurately reflect the environment as 

experienced by an organism, as variation in microhabitat can lead to very different conditions 

existing at the smallest scales. Stereo pairs of imagery from commercial satellite images can be 

used to construct digital elevation models with spatial resolutions on the order of meters, but 

imagery at this resolution can be prohibitively expensive and cloud cover and shadows can create 

holes in the imagery that must be imputed. 
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LiDAR technology is capable of recording high-resolution 3D landscape structure 

(Vierling et al. 2008) and it has been shown that such high resolution information on vertical 

structure can improve habitat suitability modeling studies (Tattoni et al. 2012, Garabedian et al. 

2014, Questad et al. 2014), but LiDAR surveys entail equipment costs and often flight times that 

can be economically or logistically prohibitive. Structure-from-Motion (SfM), a computer vision 

technique, can be used to rapidly and economically produce detailed 3D information on the 

structure of the landscape (Fonstad et al. 2013) and simultaneously record the location of 

organisms within that landscape. SfM is simple enough to deploy in any landscape (Lavy et al. 

2015), and provides data on fine scale habitat characteristics that are otherwise unavailable. 

While this survey method has been used to create digital models of artifacts in archeology 

(Green et al. 2014), measure canopy cover (Dandois and Ellis 2010, 2013, Zahawi et al. 2015) 

and record coral morphology (Lavy et al. 2015) in ecology, this work represents the first time the 

lower cost methodology of SfM has been used for modeling habitat suitability. 

 

Modeling conspecific interactions 

 

While integrated terrain and occupancy models would find utility across a number of fields in 

ecology, we demonstrate its use by applying it to the study of conspecific attraction in colonial 

seabirds. Occupancy can be modeled either as a binomial process on a two-dimensional grid or 

as an inhomogeneous spatial point process; both approaches are made feasible using SfM, 

however we use a point process approach to demonstrate the use of SfM in a case study of nest 

site selection in the gentoo penguin (Pygoscelis papua). As in many colonially nesting birds, it is 

difficult to determine to what extent gentoo penguin nests are clumped due to active behavioral 

aggregation or whether they are simply responding independently to patchiness in suitable 
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nesting habitat. High resolution terrain models integrated with information on patch occupancy 

allow us to quantitatively estimate the strength of these two competing hypotheses and provide 

an ecologically important case study for the use of this integrated mapping technique.   

 

Methods 

Structure-from-Motion 

 

Structure-from-Motion, a computer vision technique in which 3D structure is estimated 

from a set of overlapping images of the landscape, was used to produce a high-resolution 3D 

model of the study site with embedded information on nest locations (Fig. 1-1). No prior 

information on the position from which images are captured is required, as the SfM algorithm is 

able to estimate the position of the cameras independent of the unknown 3D scene and, 

consequently, the structure of the 3D terrain. 

We use a commercial product, Photoscan Professional Edition (Photoscan 2016), for the 

photogrammetric workflow. Educational licensing is available for this product at a reduced rate, 

and in 2016 was priced at $59 for the standard edition and $549 for the professional edition. 

Alternative freely available software include visualsfm (Wu et al. 2011, Wu 2013), tools in the 

python module OpenCV, and a selection of free-to-use web based services such as AutoDesk 

Catch 123D. All of these options use similar processes and workflows, but have different 

strengths and weaknesses (Kersten and Lindstaedt 2012). Having tested many of these options, 

we think Photoscan provides the most complete and user-friendly set of features for working 

with spatial data and producing georeferenced output from 3D reconstruction.  
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  Feature matching algorithms such as Scale Invariant Feature Transformations (Wu 2007) 

are used to automatically identify corresponding points observed in multiple images and solve 

for the position of pairs of camera locations independently of the unknown structure of the 3D 

scene. Given the positions and orientation of the cameras from which the images were taken the 

software can project each matched point back into 3D space to yield a vector along which this 

point must lie. For each matched point we expect the intersection of the projections from 

multiple images to converge, giving the location of that point in 3D space. The estimated camera 

positions are then passed to a multi-view stereo algorithm to create a dense point cloud 

representing the 3D surface (Fig. 1-2a). This dense point cloud is used as the basis for the 

generation of a polygon mesh, a 3D surface consisting of polygons that interpolates between the 

points in the dense point cloud (Fig. 1-2). Though the mesh is in an arbitrary coordinate system, 

this mesh can be transformed into a real-world coordinate system through the use of additional 

information collected during the survey and an appropriate georectification method. When using 

cameras with a built-in GPS system, the metadata attached to each image can be used to estimate 

the position of the cameras. These estimated locations can then be used to transform the mesh to 

a real-world coordinate system, while providing estimates of errors in camera locations. It should 

be noted, however, that these estimated errors convolve errors in the GPS positions and in the 

reconstructed mesh. Alternatively, information on the real-world position of points within the 

reconstructed scene can be used to georectify the model. Coded machine-readable targets, which 

can be produced automatically by Photoscan, can be placed into the scene prior to surveying and 

their positions recorded via a GPS (or differential GPS) unit. These targets can be automatically 

detected by the Photoscan software and encode an identifying number allowing unique markers 

to be identified. The model can then be georectified to these known points. These markers, when 
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visible in multiple overlapping images, can also aid in the alignment of images and estimation of 

camera positions. If coded targets are not available, any recognizable point within the scene, or 

identifiable non-coded markers, can be used, although this requires the user to manually identify 

the targets within images and set their real-world coordinates. Once a 3D mesh has been 

produced and georectified, it can be converted into a raster DEM for convenient use in GIS 

software. 

If no positional information is available at the time of surveying it is possible to export 

the model in an arbitrary coordinate system to GIS software where it can be georectified to 

satellite imagery as long as corresponding features, such as the corners of buildings, can be 

identified in both the 3D model and the satellite imagery. If this is the case, as it was in this 

study, it is important that the data are rescaled in the z-axis as georectification outside the SfM 

software will leave the elevation values in the original unscaled coordinate system. We exported 

an orthorectified image to ArcGIS and georectified it to existing 0.5 m resolution panchromatic 

satellite images using a linear transformation. 

The ideal approach to SfM is to produce images using an aerial survey either from 

aircraft or unmanned aerial systems (UASs). However, due to cost considerations, frequent high 

winds, and risk of negative interactions between wildlife and UASs, we use a GoPro Hero 3 

mounted on a 2.7 m pole that is carried around the site, with the camera capturing images of the 

terrain every ten seconds. While these oblique images are not ideal for SfM, tests showed that the 

elevation provided by the pole system was sufficient to allow reconstruction of the terrain. In an 

ideal scenario, a systematic transect survey would be planned in advance to ensure complete 

coverage; however, the opportunistic nature of field site access in the Antarctic and the need to 

avoid disturbing potentially sensitive nesting birds made this impossible for our application. To 
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compensate for the lack of a systematic survey plan we collected many more images than 

necessary to ensure that we had complete coverage and sufficient views of all terrain. Despite the 

challenges of three-dimensional mapping across such complex terrain we managed to reconstruct 

an area of over 50,000 m2 in with only around 40 minutes of survey effort. 

 

Occupancy 

 

After estimating the camera locations, we can project any given point in an image back 

into 3D space, resulting in a vector along which that point must lie. If we calculate the 3D 

coordinate of the intersection of this vector and the 3D mesh, we can place the point into the 3D 

landscape. 

We selected a subset of the images that contained multiple projections of every occupied 

nest at the study site. The viewpoint afforded by the 2.7 m pole was sufficient to ensure that there 

was no occlusion of nests, and while we cannot always distinguish between a resting non-breeder 

(juvenile) and a nest with eggs being incubated by a breeding penguin, the use of expert 

interpretation of images minimizes false positives. In each of the images the pixel coordinates of 

each nest were used to project back to an intersection point on the 3D mesh. This step is possible 

directly in the Photoscan software package through marker placement on an image after 

generation of the mesh. This approach results in a set of points on the 3D surface corresponding 

to the estimated locations of all penguin nests in the site. Due to errors in alignment and the fact 

that different points within each nest are selected and projected onto the 3D mesh from different 

viewpoints, nests are occasionally recorded as a cluster of points. We filter these points assuming 

a minimum distance (10 cm) between the centers of adjacent nests, visually check the images to 
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ensure each cluster is in fact an artifact of using multiple projections for a single nest, and then 

reduce these clusters to a single point at the center of the cluster. We can also use the total 

number of nests counted on the ground during surveying as a check on the number of clusters 

identified. The latitude and longitude of each point is then exported to GIS software. 

 

Point process modeling 

 

Ripley’s K-function (Haase 1995), K(r), a measure of the average number of points 

occurring within a radius ‘r’ of any other point, was used to provide a visual representation of 

pattern present. The value of Ripley’s K can be assessed over a range of values of ‘r’ and 

compared against a theoretical value expected under complete spatial randomness to understand 

scale dependent patterns occurring within the point pattern. 

Mapping individual penguin nest locations also allows us to model the location of nests 

as the outcome of a spatial point process. We hypothesize that the observed clumping of 

Pygoscelis penguin individuals (both at the scale of the colony and sub-colony units) is a 

convolution of preference for auto-correlated terrain (specifically, well-draining areas at the top 

of local peaks in elevation) and significant levels of conspecific attraction. We model nest 

locations as the outcome of a hybrid Gibbs point process (Baddeley and Turner 2005). This 

model allows for interactions among points even as the intensity of the point process varies 

according to the underlying abiotic landscape features mapped using SfM. The hybrid model has 

three components; hard-core repulsion that prevents points from occurring within a distance ℎ of 

each other, a Strauss interaction in which points separated by a distance between ℎ and a radius 

𝑟1 contribute a factor 𝛾1 (𝛾1 < 1), to the probability density, resulting in a decreased probability 
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of inter-point distances being found within this range, and a Strauss interaction in which points 

separated by a distance between 𝑟1 and a radius 𝑟2 contribute a factor 𝛾2 (𝛾2 > 1), resulting in an 

increased probability of points within this distance. The probability density for the hybrid 

process is: 

𝑓(Ζ) =  𝛼 [∏𝛽(Ζ𝑖)

𝑛

𝑖=1

] [∏𝜓(Ζ𝑖, Ζ𝑗)

𝑖<𝑗

] 

where Ζ = (Ζ1, … , Ζ𝑛) is the set of n points in the observed point process, α is a normalizing 

constant, and 𝜓(Ζ𝑖, Ζ𝑗) represents the pairwise interaction between points that depends on the 

distance ‖Ζ𝑖 − Ζ𝑗‖ between the points 

𝜓(Ζ𝑖, Ζ𝑗) =  

{
 
 

 
 
0, ‖Ζ𝑖 − Ζ𝑗‖ ≤ ℎ

𝛾1, ℎ < ‖Ζ𝑖 − Ζ𝑗‖ ≤ 𝑟1

𝛾2, 𝑟1 < ‖Ζ𝑖 − Ζ𝑗‖ ≤ 𝑟2

1, 𝑟2 < ‖Ζ𝑖 − Ζ𝑗‖

 

with γ > 1 representing attraction. The function 𝛽(Ζ𝑖) is related to the first order intensity of the 

point pattern at the point locations Ζ𝑖, 

log(𝛽(Ζ𝑖)) =  𝜇 + ∑𝜌𝑘𝑥𝑘,𝑖

𝑙

𝑘=1

 

where 𝜇 is an intercept term, 𝜌𝑘 are the coefficients for the set of 𝑙 environmental covariates, and 

𝑥𝑘,𝑖 are the values of the kth environmental covariate at the point location Ζ𝑖. 

In the case of gentoo penguins, we hypothesize that the hard-core repulsion at small 

distances is driven by the physical size associated with each individual nest, while at slightly 

longer length scales territorial behavior increases average inter-nest distance, and at larger scales 
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defense against aerial predators creates positive attraction. The main drivers of nest site selection 

(i.e. the inhomogeneous intensity of the point process 𝛽(Ζ𝑖)) are likely to be associated with the 

hydrology of the site, as waterlogging of the nest may prevent important gas exchange over the 

egg shell (Portugal et al. 2014), and cause hypothermia in chicks that have not yet reached 

thermal independence (Fargallo et al. 2001). Covariates associated with the underlying suitability 

of terrain which were selected for inclusion in the statistical model of nesting include elevation, 

flow accumulation, and a travel cost metric that combines distance to the coast (where penguins 

haul out of the water after foraging) and slope along their commute back to the nest. While cost-

weighted distance and elevation are generally inversely correlated, cost-weighted distance also 

accounts for those areas in which there is no direct path from the coast to the nest. Flow 

accumulation uses the aspect of each cell to determine the sum of cells likely to contribute to 

water-flow into any given cell. The calculation of flow accumulation is dependent on the scale 

used for analysis; for this reason, flow accumulation was calculated at a variety of scales and 

model selection used to determine which scale(s) should be retained in the best-fitting model. 

Point process models were fitted using the ‘ppm’ function in the ‘statspat’ R package 

(Baddeley and Turner 2005). Appropriate interaction distances are estimated via a model 

comparison method in which models for all combinations of parameters ℎ and 𝑟 are fitted and 

the model with the lowest Akaike Information Criterion (AIC) score selected. While artificially 

introduced boundaries in a point pattern can affect model fitting, the point pattern's boundary in 

this case is created by the coastline of the island and is thus not an artifact of the sampling; 

correspondingly, no edge correction was used in fitting the models. 
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Figure 1-1. (a)  Textured 3D mesh of Port Lockroy, Antarctica created from 493 images (b) 

Sample of images captured using a GoPro 3. Locations of occupied penguin nests are marked 

with yellow dots and blue flags. 
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Figure 1-2. (a) Dense point cloud of Port Lockroy containing 113,338,579 points produced using 

493 images processed with Photoscan (Agisoft). (b) Textured mesh containing 2,495,043 

vertices fitted to dense point cloud.  
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Results 

Of the 493 images available for Port Lockroy, the Antarctic penguin breeding site 

considered for this analysis, 459 were successfully aligned, providing at least 9 views of all areas 

of the island for generation of the 3D point cloud. The point cloud consisted of 113,338,579 

points in 3D space (5,667 points per square meter over an area of 66,395.90 m2), which were 

generalised to a mesh containing 2,495,043 vertices and 4,988,477 faces. This mesh was 

georectified and converted to a raster with a resolution of ~6 mm. 

 Ripley’s K indicated significant under-dispersion, or clustering of points, at distances 

greater than 0.3 m while at smaller distances the points were over-dispersed relative to a 

stationary Poisson point process (Fig 1-3). Model selection via AIC indicated that the estimated 

hard-core distance for the point process model (ℎ) was 0.28 m while the Strauss interaction radii 

(𝑟1, 𝑟2) were 0.5 m and 1.86 m, respectively. 

Elevation, flow accumulation, and cost distance were found to be statistically significant 

(p < 0.001) for the occurrence of nests even after allowing for the interaction of points. Flow 

accumulation was found to be significant at multiple scales (p < 0.001). Nest densities were 

higher in areas at greater elevations and in those locations unlikely to become water–logged (Fig 

4, Table 1-1). The interaction coefficients (Table 1-1) are the natural logarithm of the estimated 

interaction parameters 𝛾1 and 𝛾2. Our estimates of 𝛾1̂ = −1.13 (95th percentile CI = [-1.36,-

0.88])  and of 𝛾2̂ = 0.56 (95th percentile CI = [0.54,0.58]) indicate strong negative interaction at 

short length scales (≤ 0.5m), and positive interactions at longer scales (0.5 m - 1.86 m), leading 

to a higher density of nesting than would be expected based on first-order inhomogeneity in 

habitat suitability.  
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Figure 1-3. Ripley’s K-function (mean number of points within radius r from any point) for the 

observed point pattern (black), theoretical value under complete spatial randomness (blue), and 

value under an inhomogeneous Poisson process with no inter-point interaction (red). Confidence 

intervals generated through 1,000 simulations of point processes. Gentoo nests show over-

dispersion (fewer points than expected) at short scales (inset) and under-dispersion (more points 

than expected) at larger scales.  
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Figure 1-4. (a) Estimated intensity of inhomogeneous point process of nest locations driven by 

underlying terrain characteristics. White circles represent the locations of nests in the observed 

point pattern. (b) A stochastic realization simulated from the fitted Strauss hard-core point 

process.    
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 Coefficient Lower 

95% CI 

Upper 

95% CI 

p Value   

Intercept (𝜇) -4.01 -4.18 -3.84 < 0.001   

Elevation (𝜌1) 0.11 0.09 0.13 < 0.001   

Flow Accumulation (𝜌2) -0.00195 -0.00269 -0.00018 < 0.001   

Flow Accumulation 4x scale (𝜌3) -0.0082 -0.0095 -0.0008 < 0.001   

Flow Accumulation 16x scale (𝜌4) -0.0305 -0.0323 -0.0025 < 0.001   

Cost Distance (𝜌5) -0.0012 -0.0014 -0.0010 < 0.001   

Interaction (𝛾1) -1.13 -1.36 -0.88 < 0.001   

Interaction (𝛾2) 0.56 0.54 0.58 < 0.001   

 

Table 1-1. Parameter estimates for the fitted hybrid Gibbs process model of gentoo nest locations 

at Port Lockroy, Antarctica.  There is zero probability of points existing within 0.28m (h) of each 

other. From 0.28m to 0.5m (𝑟1) the probability of occurrence is reduced by 𝑒𝛾1, and from 0.5m - 

1.86m (𝑟2) the probability of occurrence is increased by 𝑒𝛾2.  
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Discussion 

While the datasets required to study occupancy at large spatial scales are readily available 

through remote sensing, the environment experienced by individual plants and animals is usually 

quite localized and may depend on idiosyncratic features not apparent in remotely sensed 

imagery (Questad et al. 2014). Species may occupy sites that at a landscape scale appear 

unsuitable, but at fine scales contain topographic features that produce microclimates vastly 

different from the regional average and fall well within physiological requirements. SfM 

provides a means to understand the interactions between organisms (particularly sessile 

organisms such as plants or nesting birds) and their environment, and provides data on 

occupancy and abundance that can be used in a range of spatially-explicit modeling frameworks. 

While SfM is capable of producing highly detailed 3D models, the standard workflows 

associated with habitat suitability or point process modeling require data in a planar geometry, 

causing us to collapse our dataset back to a 2D representation of the environment for analysis 

(Fig. 1-5).  The derived metrics that describe key factors of the microclimate such as hydrology 

or hillshade may be estimated directly from the high-resolution 3D information collected through 

SfM. This high resolution topographic information has been shown to improve habitat suitability 

studies, although previous efforts have utilized LiDAR systems, and have recognized that the 

associated costs are high. While lower resolution datasets may be constructed through intensive 

point sampling and interpolation, SfM offers the ability to collect this 3D information of 

comparable quality to LiDAR at a fraction of the cost. 
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Recommendations for best results 

 

To produce high quality 3D models, it is important to have sufficient overlap between 

images (between 60-70%) to allow an adequate number of points to match between images. 

While camera alignment is theoretically possible with as few as eight matched points, in practice 

the number of matched points should be orders of magnitude larger. Images should be captured 

from different locations around the site of interest rather than from an in-situ rotation of the 

camera. Additionally, an ideal camera should be at least 12 megapixels with a 50 mm film 

equivalent focal length. Photoscan also supports a fish-eye lens camera model in addition to the 

standard frame camera model, enabling the use of cameras such as the Go-Pro3 in the SfM 

pipeline. While results obtained using cameras with a fish-eye lens are of lower quality, the 

trade-off of lower camera weight may often inform the choice of camera particularly when aerial 

images are required. The parameters of the camera model, a representation of the transformation 

of light rays from lens to sensor, are estimated at the same time as the scene structure; however, 

it is also possible to calibrate cameras in a separate process using a checkerboard pattern image. 

The density of reconstructed points is a function of the number of matched points 

between overlapping images and the distance of the point from the camera. This results in a 

variable density of points across the reconstructed scene. In fact, there may be portions of the 

scene that cannot be reconstructed in cases where there is insufficient overlap or coverage in 

images, occlusion of an area, or insufficient surface texture. While interpolation of the mesh can 

be used to fill these holes (and can be carried out in Photoscan simultaneously with mesh 

creation), it is preferable to consider image capture paths prior to surveying to minimize the need 

for interpolation. In this study, there were several small areas that required interpolation due to 

the lack of matchable features in snow banks, however these represented a very small proportion 
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of the total surface reconstructed (< 7%) and these areas did not contain penguin nests. It should 

be noted that the proportion of the surface that was not constructed was far smaller than in most 

stereo-derived satellite DEMs where cloud cover can result in large holes, particularly in coastal 

areas. 

While it is impossible to calculate errors in the point cloud in the absence of a reference 

set of measurements of known accuracy, previous studies have compared the accuracies of the 

SfM approach and traditional LiDAR systems and found the two systems to have similar 

accuracies (Fonstad et al. 2013). In some instances, greater point densities are achievable through 

SfM, however it should be noted that errors may not be constant across the scene and may be 

affected by scene-dependent factors such as the distance of the camera from the scene (Fonstad 

et al. 2013). Reconstruction may fail completely or result in systematic errors when there is 

insufficient overlap between images, or when the scene being reconstructed lacks sufficient 

texture for feature matching. The result may be either a model based on a small subset of the 

available images with those images that could not be aligned excluded, or a model in which 

cameras have been incorrectly aligned and erroneous points included. These points can often be 

manually identified by their position and the projection of the incorrectly aligned camera can be 

reset. Manual placement of control points between images may then be used to attempt to correct 

the alignment issues. 

 

Lessons for seabird ecology 

 

In our demonstration of SfM as applied to gentoo penguin nesting, we find strong 

evidence of intraspecific interactions that are, in fact, more important to the probability of 

occupancy than the underlying terrain of the nest site. Simulations from the fitted model show 
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exaggerated clustering, a well-known problem in aggregative point process models (Diggle 

1983). It may be the case that the interactions among individuals are more complex than we have 

assumed here and that additional repulsive forces would stabilize the point pattern. The smallest 

inter-nest distance in our dataset was 0.28 m and, accordingly, the hard-core distance in our 

model was estimated to be 0.28 m. However, the average nearest-neighbor distance is 1 m, 

consistent with previous estimates that have suggested inter-nest distances of around 1 m 

(Stonehouse 1975). The smallest inter-nest distances found in our dataset could be caused by the 

reduction from three dimensions to two, with the z component in inter-nest distance lost during 

the projection onto the planar surface. While the ‘spatstat’ package (Baddeley and Turner 2005) 

provides the tools to visualize and summarize point patterns in 3D, the tools for fitting point 

process models on a 3D surface have not yet been developed.  

The interaction effects that we observe may also be due partially to some spatially 

autocorrelated abiotic feature not considered in our model. The use of SfM to produce a virtual 

representation of the scene allows us to return to the dataset and derive new explanatory metrics 

that describe additional features of the landscape in a way not be possible with a traditional field 

survey. In this way, SfM provides an opportunity for reanalysis if new biological hypotheses 

arise after the survey and initial analysis. 

Finally, the realized point process recorded by SfM in the field is likely to be a sub-

optimal arrangement of nests that reflects, in part, the residual influence of the initial 

colonization process. Simulated nesting patterns highlight deviations between the observed point 

process and the classic Strauss hard-core process and suggest the potential importance of initial 

conditions, though a more complete analysis of ‘optimal’ nesting strategies and non-equilibrium 

dynamics is required. 
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Structure-from-Motion offers a cheap alternative to LiDAR to produce high-resolution 

3D information on a landscape (Dandois and Ellis 2013)). While the software used in this study 

(Photoscan) is a commercial product, with the use of free software, such as visualSfM, it is now 

feasible to completely integrate organism and habitat mapping for the price of a suitable camera. 

Data collected at this resolution are much closer to the scale that is relevant to behavioral choices 

or dispersal limitations of individual organisms than most datasets currently being used in either 

habitat suitability or range modeling (Questad et al. 2014). The ability to characterize micro-

habitat, which can be highly heterogeneous at very small spatial scales, will provide ecologists a 

much better understanding of the niche requirements of a species. 

 

Additional ecological applications of SfM 

 

In addition to the production of high-resolution data at scales suitable for individual level 

habitat suitability modeling, SfM technology could be applied to a range of other ecological 

problems. SfM has already been demonstrated as a means of extracting morphological 

information from individual objects such as corals, fossils or skeletons, enabling researchers to 

record metrics such as the volume of individual regions of an object, as well as providing a 

means to store and share the 3D structure of an object without the need for access to the original 

sample (e.g. Vierling et al. (2008)). This technology also shows potential for rapid, opportunistic 

abundance surveys for static organisms, such as plants, nesting seabirds, and hauled out seals to 

name just a few. Traditional panoramic photography has long been used for the census of 

organisms (Pickard 2002) but complex topography often makes it difficult to align the 

perspectives of each overlapping image to identify portions of the scene that may have been 

missed. Through the use of SfM to reconstruct the scene, the uncertainty in overlap between 
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images can be identified and the coverage of the survey estimated. Incomplete surveys can then 

be extrapolated as needed. 

While we have demonstrated this technology with oblique imagery captured from the 

ground, results may be further improved, both in terms of consistency of point density and 

coverage, by using orthogonal imagery captured from an aerial platform, such as a plane, kite, or 

UAS. With the rapidly decreasing price and increasing usability and autonomy of UASs such as 

quadrocopters, this technology offers the potential for mapping relatively large areas at high 

spatial resolution, and producing both DEMs and orthorectified imagery of a location at much 

higher spatial resolutions than commercially available satellite imagery. All of these technologies 

will create new opportunities for understanding the fine-scale spatial ecology of organisms. 
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Figure 1-5. Raster and contour map derived from 3D model produced by Structure-from-Motion.  
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Chapter 2 - The importance of topographically corrected null models for analyzing 

ecological point processes2   

 

Abstract 

Analyses of point process patterns and related techniques (e.g., MaxEnt) make use of the 

expected number of occurrences per unit area and second order statistics based on the distance 

between occurrences. Ecologists working with point process data often assume that points exist 

on a two-dimensional x-y plane or within a three-dimensional volume, when in fact many 

observed point patterns are generated on a two-dimensional surface existing within three-

dimensional space. For many surfaces, however, such as the topography of landscapes, the 

projection from the surface to the x-y plane preserves neither area nor distance. As such, when 

these point patterns are implicitly projected to and analyzed in the x-y plane, our expectations of 

the point pattern's statistical properties may not be met. When used in hypothesis testing, we find 

that the failure to account for the topography of the generating surface may bias statistical tests 

that incorrectly identify clustering and, furthermore, may bias coefficients in inhomogeneous 

point process models that incorporate slope as a covariate. We demonstrate the circumstances 

under which this bias is significant, and present simple methods that allow point processes to be 

                                                 
2 McDowall, Philip, and Heather J. Lynch. "The importance of topographically corrected null models for analyzing 

ecological point processes." Ecology (2017) 98: 1764-1770. doi:10.1002/ecy.1877. 
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simulated with corrections for topography. These point patterns can then be used to generate 

'topographically corrected' null models against which observed point processes can be compared. 

 

Introduction 

Spatial point patterns reflecting the distribution of events in time or space are used in a 

wide range of fields including geology, epidemiology, forestry, and ecology (Diggle 1983, 

Møller and Waagepetersen 2007). In ecology, point process models have been applied to a 

variety of problems such as the distribution of plants within a patch (e.g., Stoyan and Penttinen 

(2000)), the static distributions of animals across the landscape (e.g. Funwi-Gabga and Mateu 

(2012)), spatial interactions among species (marked point process models; e.g., Illian et al. 

(2009)), and can be used to make inference about a range of ecological processes (for an 

extensive review see Velázquez et al. (2016)). Recently, the links between spatial point process 

modeling and species distribution modelling frameworks such as MaxEnt and logistic regression 

have been clarified (Renner and Warton 2013, Renner et al. 2015), highlighting their utility for 

modelling habitat suitability using presence only data. As such, it is likely that point process 

models will see even greater application within spatial ecology. 

 A spatial point pattern is a realization of a stochastic point process, in which point 

locations across a study window are generated according to a stochastic generating mechanism 

(Cressie 1993). The simplest type of point pattern is the homogeneous Poisson point process 

(alternatively referred to as ‘complete spatial randomness’ or CSR) in which points are 

distributed randomly and independently of each other. This type of point process is defined by its 

intensity 𝜆, which is the expected number of points per unit area across the window '𝑊' with area 
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𝐴. Under CSR, points are independent and therefore the expected number of points 𝑁 in area 𝐴 

is distributed as Poisson(𝜆𝐴). An inhomogeneous Poisson point process extends this model, 

allowing the intensity of the process to vary with some spatially-structured covariate. A simple 

ecological model might, for example, treat the locations of trees as a realization of an 

inhomogeneous Poisson process and their density as a function of covariates such as soil type or 

elevation. 

 There are two fundamental types of summary statistics used in the study of univariate 

point patterns. First order statistics characterize the intensity 𝜆 of the underlying process while 

second order statistics quantify the strength of correlation among points. Points closer together 

than expected under CSR would be considered clustered, while points further apart than expected 

under CSR would be considered dispersed. A common metric of second order structure is 

Ripley’s K (Ripley 1976). 𝐾(𝑟) is the number of points expected within a distance 𝑟 from any 

other point and its sample based estimate, K(r)̂, is 𝜆−1∑ 𝐼(𝑑𝑖𝑗 < 𝑟)𝑖≠𝑗 /𝑛, where 𝑑𝑖𝑗 is the 

distance between the ith and jth point and I( ) is an indicator function that takes the value 1 (0) 

when the operand is true (false). For an observed point pattern K(r)̂ can be evaluated at a range 

of 𝑟 values, and deviations between K(r)̂ and 𝜆𝜋𝑟2 (the expected number of points within a 

distance 𝑟 under CSR) used to indicate inter-point interaction at distance 𝑟. It is important to note 

that inhomogeneity in the intensity of the point process may generate second order properties 

consistent with clustering even when points are independent of one another. While the theoretical 

value of 𝐾(𝑟) can also be calculated for an inhomogeneous point process (Baddeley et al. 2000), 

Monte Carlo methods are often used to identify deviations between an observed statistic of the 

point pattern and its distribution as derived by simulations under a null model. There are many 

alternative test statistics to 𝐾(𝑟), such as the pair correlation function 𝑔(𝑟), which also might be 
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used to understand non-random occurrences of points, and the basic methods available for 

hypothesis testing are largely shared among metrics.  

 Software is available (e.g. `spatstat` R package  (R Core Development Team 

2013,(Baddeley et al. 2015)) for analyzing linear point patterns occurring in R1 (points generated 

along a one-dimensional line segment), planar point processes occurring in R2 (points generated 

in the two-dimensional x-y plane), and even 3D point processes occurring in R3 (points 

generated within a 3D volume). However, the generating processes in many ecological 

examples, particularly in the terrestrial environment, would not fit comfortably into any of these 

categories. Ecological data are often recorded and reported as a set of coordinates on a two-

dimensional plane, either an x-y pair in a locally-defined spatial reference system or as latitude 

and longitude in a geographic reference system. The positions of these points represent a 

projection from a two-dimensional surface embedded in three-dimensional space (the landscape) 

onto a two-dimensional plane. The projection used, an orthographic projection which converts 

(x,y,z) to (x,y) by simply dropping the z component, is neither conformal nor authalic (area 

preserving) and, as such, may only approximately preserve the first and second-order 

characteristics of the point pattern. If a Poisson point pattern is homogeneously generated on a 

non-planar surface, 𝑆, then it may become inhomogeneous when projected to 𝑊 with distances 

and areas in 𝑊 being less than their original form in 𝑆. This results in a bias strictly towards 

increased intensity, which would bias our inference if the null model is specified as CSR on 𝑊 

rather than 𝑆. Failing to account for the transformation to the plane will lead to apparent 

clustering or, in the case of fitted models, will incorrectly identify covariates as important to the 

process that are merely correlated with the difference between the terrain and its projection. In an 

ecological context, terrain slope is the most obvious covariate correlated with the projection to 
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the x-y plane, though the potential for bias extends to any covariate correlated with slope, such as 

hydrological flow, soil type, or sun exposure.  

 While the effects of projecting surfaces to a plane have been widely considered both in 

cartography and GIS through orthorectification of topographic surfaces, these issues have not 

been widely acknowledged in the analysis of spatial data in ecology (but see (Baddeley et al. 

2015) pages 175-176). It is not unusual for topographically derived information to be included in 

models of non-stationary Poisson point processes, such that the intensity of points becomes a 

function of some feature such as elevation or the norm of elevational gradients. However, a 

topographically correct null model has not been widely considered in the analysis of spatial point 

pattern data. To address the issues of projecting from 𝑆 to 𝑊, we describe a set of simple 

correction methods to facilitate the use of topographically corrected null models for point pattern 

analysis. 

Methods 

 We present several methods for simulating point processes that account for the topography of 

the generating surface. The first of these methods deals with surfaces that can be written in a 

parametric form with coordinates (𝑥, 𝑦, 𝑓(𝑥, 𝑦)). While surfaces of this nature are unlikely to be 

found in ecological studies, the algorithm forms the basis of methods that approximate the exact 

rejection sampling method available for parametric surfaces3.  

 

 

 

                                                 
3 R and Python code implementations of these methods (and methods for additional data formats) are included in the 

Appendix. 
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Parametric surfaces 

 

 If a surface can be represented parametrically in the form 

𝑆 =  {(𝑥, 𝑦, 𝑓(𝑥, 𝑦))  ∈ 𝑅3: (𝑥, 𝑦) ∈ 𝑊}  

where 𝑓(𝑥, 𝑦) is a differentiable function and 𝑊 is a bounded domain in 𝑅2, then the surface 

area can be calculated as the double integral 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 = ∬ √1 + (
𝜕𝑓

𝜕𝑥
)
2

+ (
𝜕𝑓

𝜕𝑦
)
2

𝑑𝐴
𝑊

                 ( 1 ) 

where 𝑊 is the domain of the surface 𝑆 as projected to the x-y plane. It is this projection of the 

surface, from 𝑆 to 𝑊, that is typically considered in a point pattern analysis. It is worth noting 

that we can construct many functions which project to the same region 𝑊, any of which might 

generate a different area of the surface 𝑆.  

 To simulate a homogeneous Poisson point process over the surface 𝑆 we do not need to 

compute the full double integral in Eq. 1. Instead we only need a function that can be used to 

select points with probability proportional to the ratio of the area of the surface and its projection 

to 𝑊, i.e. 𝑆𝑖/𝑊𝑖  . This can be used to construct a rejection sampling-based algorithm to generate 

points randomly distributed across the surface (modified from (Melfi and Schoier 2004)). The 

algorithm proceeds as follows.  

1. Define a function 𝑔(𝑥, 𝑦) such that 𝑔(𝑥, 𝑦) = 𝜆√1 + (
𝜕𝑓

𝜕𝑥
)
2

+ (
𝜕𝑓

𝜕𝑦
)
2

 , where 𝜆 is the 

intensity of the point process on the surface. 

2. Generate a set of points uniformly randomly over the domain 𝑊 with intensity equal to 

the maximum of 𝑔(𝑥, 𝑦) over the region 

3. Calculate 𝑔(𝑥𝑖 , 𝑦𝑖) for each point 

4. Accept points with probability equal to 
𝑔(𝑥𝑖,𝑦𝑖)

𝑚𝑎𝑥𝑖∈𝑊𝑔(𝑥𝑖,𝑦𝑖)
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The value calculated in Step #4 is the correction factor between the true surface area and that 

same area projected onto 𝑊. This approach can be extended to inhomogeneous point process 

models by replacing 𝜆 with a function that describes the intensity of the point process as a 

function of spatially-structured covariates (e.g., slope, aspect, elevation). While the approach for 

parametric surfaces is appealing, it hinges on finding an analytical function 𝑓 that closely 

approximates the true surface. While we may not be able to find a suitable function, we can still 

measure and approximate the surface to allow for topographic correction of the null model. 

 

Raster data 

 

  A raster DEM encodes information about elevation in a two-dimensional grid. If we treat the 

raster DEM as an approximation of the surface 𝑆, we can apply the same algorithm described 

above to simulate topographically corrected point patterns. In this case, we replace the double 

integral in Eq. 1 with a Riemann sum over the 𝐾 cells each of area 𝐴,  

                                     𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 =  ∑ √1 + (
𝜕𝑓(𝑥𝑖,𝑦𝑖)

𝜕𝑥
)
2

+ (
𝜕𝑓(𝑥𝑖,𝑦𝑖)

𝜕𝑦
)
2

𝐴𝐾
1 . ( 2 ) 

The quality of this approximation depends on the resolution of the raster, with higher resolutions 

(smaller values of 𝐴) allowing for a better approximation to the true surface. While we might not 

have a differentiable function 𝑓(𝑥, 𝑦) in the case of real terrain, we can use the fact that elevation 

values in a cell’s neighborhood provide an approximation of the gradient of the surface within a 

cell, and from this we can estimate the area of the surface of 𝑆 that is projected onto each grid 

cell. There are several algorithms available for estimating the three-dimensional surface area of 

grid cells in a raster DEM; we use an 8-point algorithm (Jenness 2004) which approximates the 

area of a cell by constructing three-dimensional triangles between the center of the cell and its 8 

neighbors and then summing the area of triangles that fall within the focal cell.  This improves 
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accuracy over methods using only 4 neighbors, and the implementation in the `sp` R package 

(Bivand et al. 2008) is fast enough that even large datasets are computationally feasible. Because 

the area calculation is dependent upon the surrounding cells, the area of cells falling on the 

boundary of the elevation raster will be poorly defined and it is preferable, therefore, to ensure 

that the raster extends at least one column or row beyond the domain 𝑊.  Given a raster of 

surface areas we must then divide by the area of each cell, giving a correction factor 𝑆𝑖/𝑊𝑖 for 

the projection that can be used in a rejection sampling algorithm. Generating a rasterized 

correction factor for the projection allows us to use existing tools to simulate topographically 

corrected point patterns, perform Monte-Carlo based hypothesis tests using a corrected null 

model, and fit point process models to data. 

 By using a null model which is an inhomogeneous point process with intensity given by 

𝜆𝑆𝑖/𝑊𝑖 we can simulate a point process that approximates a point process operating on the 

surface 𝑆.  Additionally we can explore models of inhomogeneous point processes by including 

log (𝑆𝑖/𝑊𝑖) as an offset term when fitting models (Baddeley et al. 2015). An offset term allows 

for a covariate to be included in the models with a parameter value fixed at 1. By including the 

logarithm of the correction factor in the model specification as an offset we can fit the model 𝜆 =

𝑆𝑖/𝑊𝑖𝑒
𝛽𝑥, which is corrected for the projection from 𝑆 to 𝑊. While it is possible to estimate the 

parameters of a point process with interaction terms while including this offset term, it should be 

noted that while the intensity of the point process should be topographically correct, interpoint 

distances and areal statistics used in the interaction term are still computed on the x-y plane with 

no correction for topography, which may lead to a positive bias in the interaction terms of the 

model. 
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Terrain driven bias when testing for CSR 

 

 To demonstrate how projecting point patterns to the x-y plane can bias statistical tests for 

CSR, we provide several examples of the kinds of false inference that may result from failing to 

correct for topography. For a set of synthetic surfaces (Fig. 2-1) we define two point processes: 

one simulated directly on the surface 𝑆 using our algorithm for parametric surfaces (referred to 

as the observed point pattern) and the other a naïve null model of CSR simulated over the 

projection to 𝑊.  For each of the surfaces we calculate Ripley’s 𝐾(𝑟) and the pair correlation 

function 𝑔(𝑟) for both the observed point patterns and the CSR null models to investigate how 

the projection from 𝑆 to 𝑊 can bias second-order metrics of spatial structure commonly used to 

identify attraction or repulsion among points. We perform two Monte-Carlo based tests using 

𝐾(𝑟) and 𝑔(𝑟), the Diggle, Cressie, Loosmore and Ford test (dclf) (Loosmore and Ford 2006, 

Baddeley et al. 2014) and the Maximum Absolute Deviance test (MAD) (Ripley 1977), and one 

parametric test on 𝑔(𝑟) (Analytical Global Envelopes [AGE] (Wiegand et al. 2016)), to identify 

deviations between the observed and null model. These tests address the issue of multiple 

comparisons, required due to the testing of hypotheses at many values of 𝑟 (Baddeley et al. 

2014), in different ways. The MCMC methods test for deviations based on the ranking of an 

observed test statistic amongst the same test statistic generated from multiple simulations of a 

null model. In each MCMC test we used 999 simulations from the null model. The intensity λ 

was standardized between surfaces, such that the expected number of points was equal between 

surfaces, to provide approximately equal power in each test. The AGE test assumes 𝑔(𝑟) is 

normally distributed and independent at each value of 𝑟, and that for certain null hypotheses 

(e.g., CSR) the mean and variance of the test statistic can be analytically derived (Wiegand et al. 

2016). 
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 We performed each of these tests (MCMC using 𝐾(𝑟)) and 𝑔(𝑟), and AGE using 𝑔(𝑟)) 

10,000 times for each surface and recorded the number of times that we would reject the null 

hypothesis at a significance level of 0.05.  

 In order to demonstrate that terrain is likely to affect real world results and to explore the 

sensitivity of the bias to point intensity, we also simulate homogeneous Poisson point processes 

with varying point intensities on the surfaces of three published topographic datasets and 

perform null hypothesis testing (CSR null on 𝑊) using the MAD test based on 𝐾(𝑟)  

 Finally, we fit models with and without topographic corrections to the ‘bei’ dataset 

accompanying the spatstat package to explore how parameter estimation can be biased by the 

surface on which points are generated. The ‘bei’ dataset contains the point locations of 3605 

trees (Beilschmiedia pendula) in the tropical rainforest of Barro Colorado Island. In addition to 

the point locations, the dataset also provides topographic information on a 5 m resolution grid. 

Following Baddeley et al. (2015) we include slope as a covariate xi for the intensity 𝜆 

𝑙𝑜𝑔 (𝜆) = 𝛽𝑥𝑖     ( 3 ) 

and compare it to the model including the offset term for topographic correction  

𝑙𝑜𝑔(𝜆) = 𝑙𝑜𝑔(𝑆𝑖 𝑊𝑖⁄ ) + 𝛽𝑥𝑖 ,    ( 4 ) 

where 𝑆𝑖 𝑊𝑖⁄  is the correction factor associated with the projection from 𝑆 to 𝑊. 

 

Results 

Monte Carlo Tests 

 

 While the realized Type I error rates for our planar surface (Fig. 2-1a) were, as expected, 

approximately 0.05 (Table 2-1), non-planar surfaces (Fig. 2-1b-d) resulted in the rejection of the 

null at a much higher rate. For the most extreme of the surfaces (the exponential function [Fig. 2-
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1-d]), the null was rejected in all 10,000 tests when using tests based on 𝐾(𝑟). Type I error rates 

in tests based on 𝑔(𝑟) were also higher than expected, however these methods do not have the 

same power to detect departures from CSR as those based on the cumulative 𝐾(𝑟). The plots of 

𝐾(𝑟) and 𝑔(𝑟) show that for all non-planar surfaces (Fig. 2-1-b-d;iii) the envelopes for the 

observed point patterns fall above the envelopes for the naïve null model, incorrectly suggesting 

the points are clustered. In contrast, the envelope for the planar surface (Fig. 2-1-a-iii), which 

serves as a check on our methodology, overlaps with that of the naïve null model as expected, 

indicating that the null model and observed point pattern have equivalent statistical properties. 

Simulations over real topographic surfaces indicate that inflated type I error rates are possible for 

realistic topographies and densities of points, with error rates ranging from the expected 5% up 

to 13% in the most extreme cases (Fig. 2-2). A comparison of the distribution of correction 

factors in these real topographies and synthetic surfaces is presented in the Appendix. 

 

Model fitting 

 

 While both slope and elevation remain statistically significant in both models of the 

distribution of B. pendulu, the inclusion of topographic correction alters the estimates of the 

parameters for both slope (Uncorrected: 5.84 [SE 0.26]; Corrected: 5.79 [SE 0.26]) and intercept 

(Uncorrected:  -8.56 [SE 0.34]; Corrected: -9.55 [SE 0.34]). While the differences are small it 

should be noted that these parameter estimates are on the log scale; the effect on estimated 

intensity (on 𝑆) is substantially larger, as much as 17%. 
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Surface MAD Test  

k(r) 

Rejection 

Rate 

dclf Test  

k(r) 

Rejection 

Rate 

MAD Test 

g(r) 

Rejection 

Rate 

dclf Test  

g(r) 

Rejection 

Rate 

AGE Test 

g(r) 

Rejection 

Rate 

Planar (a) 0.04 0.04 0.03 0.03 0.07 

Sine function (b) 0.09 0.06 0.05 0.05 0.08 

Step function (c) 0.76 0.76 0.08 0.06 0.10 

Exponential 

function (d) 

1.00 1.00 1.00 1.00 1.00 

 

Table 2-1. Rates of rejection of Poisson point process null-hypothesis for patterns generated on 

3D surfaces and projected to a 2D plane. Null-hypothesis testing was carried out on 

homogeneous Poisson point patterns generated on three surfaces using the Diggle, Cressie, 

Loosmore and Ford Test (dclf) and Maximum Absolute Deviance (MAD) test.  
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Figure 2-1 – i) Homogeneous Poisson point patterns generated on three 3D parametric surfaces 

projecting to the same region W. a) z=sin(x); b) stepwise function (note that while this function 

is not itself differentiable, it is piecewise differentiable which is sufficient); c) z=ex/100. ii) 

Kernel density estimate of a realization of 10,000 points on the surface from i. iii) Ripley's K for 

10000 simulated point patterns on each surface (assuming homogeneity in W)/ The maximum 

and minimum values of this test statistic are shown in red, while blue denotes the corresponding 

envelopes from CSR generated in W. 
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Figure 2-2 – Topographic correction of the ‘bei’ point process dataset. i) The 'bei' dataset from 

spatstat includes the point locations of 3605 trees and associated topography. ii) Proportional 

difference in estimated intensity of points between models with and without topographic 

correction. 
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Discussion 

 While planar projections allow for simple analysis, the appropriate null model must account 

for the non-planar surface on which the generating process operates. When a hypothesis test for 

CSR is performed in the x-y plane, the intention is often to determine whether there is some 

structure to the observed points resulting from inter-point interactions or spatial inhomogeneity 

of the generating process. It is important, however, to recognize that there is a distinction 

between rejecting an unsuitable null model of CSR and assuming that points are non-randomly 

distributed.  

 We have demonstrated that the statistical properties of the point pattern projected onto 𝑊 are 

a function of the surface 𝑆 on which they were created, and that the difference between a naïve 

null model and a topographically correct model are non-trivial and may lead to false inference. 

As illustrated by plots of Ripley’s K, use of a naïve null model will bias tests towards detecting 

clustering in point patterns even when points are independent but, due to the projection from 𝑆 to 

𝑊, inhomogeneous. In some cases, the properties of the topographical surface are such that the 

correction factor 𝑆𝑖/𝑊𝑖 is uniformly unity, it may be unnecessary to correct for topography. 

However, even when the projection to the plane maintains both the first- and second-order 

properties of the point pattern, these surfaces still exhibit bias in estimates of the intensity of the 

point process, with λ being consistently overestimated. In the majority of cases, consistent Type I 

error rates and unbiased parameter estimation require corrections for topography.  

 Even a cursory review of the ecological literature reveals papers in which it was concluded 

that slope is an important factor in driving point patterns. Without correcting for the non-area 

preserving projection, we would expect a priori that slope (and covariates correlated with slope) 
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would have a positive effect on the intensity of the point pattern due to the projection to 𝑊; any 

apparent association between intensity and slope might be a geometric artifact, and so the 

appropriate null model for concluding an ecologically-driven association requires careful 

consideration. If we redefine the study area to be a smaller subset of 𝑊 and defined a local 

coordinate system on an approximately tangent plane to the surface, we may find that the 

intensity would be inconsistent with our expectations derived across 𝑊. 

 Recent publications have highlighted the equivalence of point process modelling and more 

widely adopted species distribution model methods such as MaxEnt and logistic regression 

(Renner and Warton 2013). These techniques estimate the probability that a point occurs in the 

𝑖𝑡ℎ cell of a regular grid across the study area. Assuming the generating process operates locally 

on the terrain, the probability of a point falling within the 𝑖𝑡ℎ cell of a regular grid in 𝑊 will be a 

function of the ratio between the area of the surface projected onto the 𝑖𝑡ℎ cell and the area of the 

cell. Both MaxEnt and logistic regression, therefore, are likely to be affected by the topographic 

projection, and may be prone to bias when covariates in the model are correlated with slope. 

 While we have demonstrated approximate corrections for the effects of projection on 

summary statistics in the plane, more complex models involving interpoint interactions need 

further development. In most cases, the biologically meaningful distance between points should 

be calculated on 𝑆 rather than 𝑊. By weighting interactions by the surface corrected line 

segment between two points, it should be possible to construct second-order point process 

models that are also topographically corrected. 

 Constructing topographically correct null models is straightforward; methods are available 

for a range of topographic data types and the rejection sampling algorithms required to simulate 

from these null models are already implemented in various software packages. While CSR is 
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often the first choice of null model, prior knowledge of a system may suggest that a more 

nuanced null is appropriate. While we have dealt with corrections to CSR based null models, the 

same approach can be used to topographically correct any inhomogeneous null model, by 

applying the same correction factors as calculated for CSR. It should be noted however that 

correction of non-Poisson nulls (i.e. those that include interpoint interactions) would require 

further work to calculate interpoint distances across a surface. 

Ecologists should consider using these methods in the analysis of point pattern data, and should 

use topographically correct null models before seeking biological or ecological drivers for 

clustering. The increased availability of high resolution topographic datasets will provide 

ecologists unprecedented capacity to understand static spatial distributions of animals, and it is 

now time to upgrade our tools to consider the full three-dimensional nature of the environment in 

spatial ecology. 
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Chapter 3 - When the "selfish herd" becomes the "frozen herd": Sub-optimality in colonial 

seabirds and its consequences for persistence under decline4 

 

 

Abstract 

Hamilton's ‘selfish herd’ hypothesis suggests that aggregations may be driven by an 

individual's effort to minimize their risk of predation by surrounding themselves with 

conspecifics. In fluid, highly mobile aggregations, individuals are constantly moving in response 

to changing environmental conditions, the locations of predators, or the movements of 

conspecifics. However, when the ability to rearrange is limited and spatial reconfiguration occurs 

on slower time scales than changes in population size, systems may become trapped in sub-

optimal arrangements. We use simulated annealing to demonstrate that Pygoscelis spp. penguin 

colonies are frozen in sub-optimal spatial arrangements and discuss some hypotheses as to why 

such sub-optimal arrangements might persist. 
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Introduction  

The theory of the selfish herd, proposed by Hamilton (1971), suggests that aggregations 

of individuals arise when individuals seeking to minimize their ‘domain of danger’ surround 

themselves with conspecifics. This attempt to optimize one's individual spatial configuration 

leads to larger, more compact aggregations in which the risk of predation varies spatially through 

the aggregation. Studies have identified a number of systems that appear to exemplify the 

‘selfish herd’, particularly among highly mobile organisms such as flocking birds or schooling 

fish (McKaye et al. 1992, Viscido and Wethey 2002, Couzin and Krause 2003, King et al. 2012). 

Highly mobile individuals and the aggregations they form can rapidly reorganize in response to 

changes in the shape of the cost function, such as the arrival of a predator (Parrish and Edelstein-

Keshet 1999). However, when reorganization of a spatial configuration is impeded or occurs on a 

slower time scale, the ability of an aggregation to rearrange may be limited. One manifestation of 

this phenomenon occurs in colonially nesting seabirds, where the spatial aggregation of nests is 

driven by predation at the edge of the colony (Schreiber and Burger 2001). Pygoscelis spp. 

penguin colonies are approximately hexagonally-packed aggregations of nests distributed across 

bare rock areas in coastal Antarctica and represent an excellent case study for understanding the 

dynamics of the ‘selfish herd’ when reorganization is impeded. The most prolific predators of the 

Pygoscelis penguins, the Skua (Stercorarius sp.), often initiate predation from the ground on the 

peripheries of a colony and, as a result, reproductive success on the edge of a colony can be up to 

eight times lower than in the center (Emslie et al. 1995, Hahn and Peter 2003). Accordingly, 

individuals should seek to minimize their risk by searching for a nest site that maximizes the 

occupancy of their neighborhood by conspecifics. The associated Allee effect may slow the 
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establishment of new colonies and is likely to be important for the spatial patterning of colonies 

that do form. 

Given a free choice of location across a homogeneous landscape and sequential filling of 

available nest sites, we might expect that colonies would grow outwards in a circular fashion as 

individuals select nest sites that maximize their neighborhood. However, recent advances in the 

use of high-resolution satellite imagery have revealed that penguin colonies are often highly 

fragmented, with nesting areas forming spots, stripes, and labyrinthine patterns (Fig. 3-1).  

We sought to understand why apparently sub-optimal arrangements would be nearly 

universal in Pygoscelis colonies. We hypothesized that these temporally dynamic arrangements 

of individuals within a colony are the result of individual level decisions (the ‘selfish’ part of the 

selfish herd) that seek to maximize the individual's fitness by providing the best chance of 

successful reproduction. However, when the optimality of an individual choice is dependent on 

the choices of all other individuals, the ability to find a globally optimal solution may be 

impacted. In a homogeneous landscape, the optimal configuration of penguins is simple to 

derive, however, terrain creates a heterogeneity in ‘suitable’ habitat that complicates the search 

for a globally optimal arrangement. To understand the benefits of colonial breeding, and the 

associated spatially structured Allee effects, we must consider habitat suitability and conspecific 

interactions simultaneously. Identifying how spatial patterning and its temporal dynamics might 

influence vital rates is essential for understanding the population dynamics of colonial seabirds. 

Spatial patterning of animal aggregations is inherently interesting as a driver and reflection of 

animal behavior. Understanding such patterns takes on additional urgency, however, when they 

either feed into population dynamics or can be used as a proxy for population health.  
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Methods 

We focused our analysis on the nesting patterns of Pygoscelis adelie (Adélie penguin) at 

Beagle Island, a 180 ha island at the northern extent of the Western Antarctic Peninsula. Using 

high-resolution 3D models of terrain and nests, produced through photogrammetry (McDowall 

and Lynch 2017), we produced a set of five environmental covariates for 1,893,597 1.2m 

diameter hexagonal grid cells, each of which may be occupied by a single penguin nest. The use 

of a hexagonal grid allows interactions between nearest neighbors to be isotropic, in contrast to a 

more traditional square grid in which the centers of diagonal nearest neighbors are more distant 

than the cardinal neighbors. 

 We hypothesized that the spatial arrangement of penguins on the island represents a 

convolution of the optimal configuration for predator avoidance and the spatial configuration of 

the landscape itself (specifically, well-draining areas at the top of local peaks in elevation). To 

separate the effects of habitat quality and intraspecific interactions, we constructed Bayesian 

auto-logistic use-availability models for Pygoscelis penguins on our hexagonally-gridded 

landscape. The auto-logistic model is a Markov random field model that extends the traditional 

logistic model often used to model binary occupancy over a two dimensional grid by 

incorporating an additional term, which allows for spatial dependence between the response 

variable, while simultaneously modelling the effect of spatially structured covariates (Hughes et 

al. 2011). This model is of the form: 

𝑌𝑖 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖) 

 log (
𝑝𝑖

1−𝑝𝑖
) = 𝛼 + 𝛽𝑋 + 𝛾(∑ 𝑌𝑖𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ), 
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 where 𝑌𝑖 is the 0-1 coded occupancy of the 𝑖𝑡ℎ cell, 𝑝𝑖 is the probability that the 𝑖𝑡ℎ cell is 

occupied, 𝛼 is an intercept term, 𝛽 and 𝑋 are, respectively, vectors of parameters and covariates 

relating to the abiotic conditions at the  𝑖𝑡ℎ cell, 𝛾 is the strength of nearest neighbor interaction, 

and ∑ 𝑌𝑖𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠  is the number of the 𝑖𝑡ℎ cells neighbors that are occupied. 

We parameterized this model using variables relevant to individual penguins making 

decisions about where to nest, while simultaneously modeling the interactions among 

conspecifics (Fig 3-2 and Fig 3-3b). Water damage to eggs is an important factor in breeding 

failure, and Pygoscelis penguins invest a lot of energy into building and maintain a large pebble 

nest to protect their eggs. We therefore included ‘flow accumulation’, a hydrological metric, in 

the model. Other variables included were elevation, slope, and distance to the shoreline cost-

weighted with the slope of terrain that must be crossed. Additionally, for each cell we calculated 

the occupancy of the 6 adjacent grid cells that form its neighborhood. We used uninformative 

priors (~𝑁(𝜇 = 0, 𝜎 = 106)) for all model parameters, and fit the model using 50,000 samples 

from 3 chains under Hamiltonian MCMC sampling with a No-U-Turn Sampler.  

 We used a metaheuristic approach, simulated annealing5, to explore whether observed 

patterns of nesting are sub-optimal relative to the apparent preference for both abiotic habitat and 

the presence of adjacent nests. At each iteration, we proposed a stochastic movement of a nesting 

penguin. We then calculated the energy potential, defined as the suitability of the arrangement 

under our model, and accepted it with probability 𝑚𝑖𝑛 (1, 𝑒
𝛾𝑜−𝛾𝑝

𝑇 ), where 𝛾𝑜 and 𝛾𝑝 are the 

energy of the original and proposed configurations, respectively, and 𝑇 (systematically reduced 

in each iteration) is a temperature parameter controlling the probability of accepting a transition 

                                                 
5Python implementation of Simulated Annealing available at https://github.com/phil-mcdowall 
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to a less optimal state. This approach is well suited to finding local optima in a large 

configuration space where finding the global optimum is neither feasible nor necessary. 

 

Results 

The penguin colony at Beagle Island is in a sub-optimal arrangement, with greater 

patchiness than configurations with a lower 'energy' configuration. Not surprisingly, allowing 

individuals to make only ‘optimal’ moves (i.e., runs in which the ‘annealing’ part of the 

algorithm is disabled) yields sub-optimal arrangements compared to those achieved with 

annealing. While the best configuration achieved through simulation is likely to be far from 

globally optimal, our simulation easily finds lower energy (more optimal) configurations than are 

found empirically at Beagle Island (Fig 3-2c). Accordingly, our model and the existing map of 

penguins at Beagle Island strongly suggest that penguins persist in a highly sub-optimal 

arrangement. 
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Figure 3-1. Satellite image (Imagery Copyright 2015 DigitalGlobe, Inc.) of Pygoscelis colonies 

illustrating the small scale spatial structuring of colonies. 1A&B: Cape Adare - 11 Dec 2015, 1C: 

Avian Island - 26 Jan 2010, 1D: Beaufort Island - 25 Dec 2011, 1E: Paulet Island - 4 Feb 2016, 

1F: Hope Bay - 17 Jan 2016, 1G: Cape Crozier - 15 Dec 2015, 1H: Possession Island - 14 Jan 

2016 
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Figure 3-2. Posterior distribution of parameters of the auto logistic model of nest occupancy at 

Beagle Island. Intercept = -3.40 (95%CI: -3.49, -3.32), Neighborhood = 1.10 (95%CI: 1.09, 

1.10), Flow Accumulation = -0.140 (95%CI: -0.146, -0.134), Cost Weighted Distance = -0.001 

(95%CI -0.001, -0.001), Elevation = 0.003 (95%CI: 0.002, 0.005), Slope = -0.002 (95%CI: -

0.002,-0.002). 
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Figure 3-3. a) Optimal configurations of Pygoscelis nests in a hexagonal packing scheme on a 

homogeneous landscape. Some configurations of nests are ‘stable’ and no individual can 

improve their position by moving alone, while in other configurations sequential movement of 

individuals to optimal positions can lead to new configurations in which first order neighborhood 

occupancy is maximized. b) Suitability surface of Beagle Island estimated through high-

resolution photogrammetry and auto-logistic modelling. c) Original configuration of nests 

observed at Beagle Island (1) and a more optimal arrangement reached through simulated 

annealing (2). 
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Discussion 

When colony size decreases, geometry dictates that the proportion of sites available on 

the edges of the colony increases. This forces more birds to assume one of these lower quality 

nesting locations and potentially makes more birds vulnerable to predation, lowering the average 

reproductive success of even an ‘optimally’ arranged colony. However, as these colonies 

contract, they frequently appear to simultaneously fragment into smaller sub-colonies with 

greater exposed perimeter than would occur if the colony was not fragmented (Jackson et al. 

2005). We demonstrate that penguin colonies are sub-optimal relative to inferred preference for 

landscape characteristics and are patchier than would be predicted based on the estimated 

strength of nearest neighbor interactions. This leads us to the question: Why are penguin colonies 

sub-optimally arranged?  

We suggest several drivers, none mutually exclusive, that might explain the apparent sub-

optimality of spatial dynamics: (1) nest site inertia, (2) short-range pair interactions, (3) 

individual level decision making, and (4) incomplete information due to limited perceptual 

range. The net result of these mechanisms leads to a configuration in which the 'selfish herd' 

becomes frozen in a sub-optimal configuration, with potential consequences for the temporal 

evolution of pattern, and therefore abundance, in a declining population. This scenario has 

received little attention in biology but is analogous to well-studied systems in statistical 

mechanics and condensed matter physics in which non-equilibrium states or incomplete phase 

separation becomes kinetically frozen.   

 Adélie penguins are faithful to an individual nest site, and by consequence, colonies of 

penguins display far greater spatiotemporal inertia than most other animal systems in which 

selfish herd dynamics have been examined. In a newly established colony, sequential choice of 
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sites might conceivably lead to an acceptably optimal arrangement as the selection of an optimal 

nest site is relatively trivial; each individual chooses a location adjacent to the founders’ 

subcolony unit that maximizes their neighborhood and habitat quality. However, when an extant 

colony undergoes stochastic changes in size (through mortality, emigration or skipped breeding), 

high nest site fidelity and philopatry ensures that the new configuration must be a rearrangement 

of the existing configuration, which is more difficult to optimize. This rearrangement, in which 

each individual makes at most a single move in a breeding season, is slow relative to the life 

span of a breeding bird and population level dynamics. Additionally, in contrast to more 

traditional animal aggregations, in Pygoscelis penguins the benefits of nesting near conspecifics 

only occur at very short ranges, acting at the nearest neighbor level. This short-range interaction 

prevents distinct sub-colony units from experiencing attraction between each other and ensures 

that only individual movement decisions can be effective. 

 When the number of nesting individuals decreases, some proportion of individuals will 

find their nest site quality drops as a function of their neighborhood. If these established 

individuals decide to move, they may have difficulty finding a nest site that improves on their 

current location and may only be guaranteed a site of equivalent or lesser suitability at some 

other location on the periphery of the colony. Our simulated annealing approach demonstrates 

that arrangements of nests can be found that reduce the number of individuals on the exterior of 

colonies. Critically, however, local optima that cannot be escaped by rational sequential 

movement of individuals is common. As individuals act independently, each penguin must 

decide to move based on incomplete information; their final neighborhood depends upon the 

subsequent moves made by all other individuals that might complete its neighborhood. 

Additionally, only those penguins on the exterior of a sub-colony stand to make significant gains 
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from moving, while those occupying interior sites might prefer the colony to remain in their 

current configuration. Without coordinated movement these factors cause local optima in the 

configuration space in which no individual can guarantee it will improve its condition by moving 

without knowledge of the moves that might subsequently be made by other individuals. This lack 

of complete information, both of the landscape and the moves that might be made by other 

individuals, prevents the colony from reaching a globally optimal configuration. 

A penguin's dilemma can be understood by analogy to the Nash equilibrium in game 

theory. Nest site fidelity results in an ‘iterative’ game where each year’s strategic decision must 

build off the previous year’s, and payoffs (reproductive success) are awarded at each iteration. 

Each individual in the colony has a strategy for reproduction as reflected in their chosen nest 

location. If all other individuals in the colony keep their strategies unchanged, no individual has 

an incentive to move as they cannot do better than their current strategy. While Nash equilbria 

are used in the context of the evolution of aggregative behavior (Wood and Ackland 2007), 

models of the 'selfish herd' tend to consider time periods over which closure can be assumed, 

often with the benefits of proximity to conspecifics as a continuous function of distance. 

However, when aggregations are considered over longer time periods and when conspecific 

interactions only occur at short distances, these Nash equilibria may arise within the aggregation. 

Though sub-optimal nesting arrangements may arise through a number of mechanisms, the 

existence of a sub-optimal state implies transient dynamics may be 'frozen' by nest site fidelity in 

stochastically changing populations. Without nest site fidelity the spatial configuration of a 

colony might be fluidly rearranged in each breeding season, avoiding the potential for these 

‘Nash equilibrium’-driven frozen states. The existence of such 'frozen states' may allow 

hysteresis in the spatial patterning of penguin colonies under growth and declining abundance. 
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Colonies in decline may be susceptible to fragmentation, increased edge effects, and accelerated 

deterioration of a colony. Nest site fidelity may be a useful optimization strategy in increasing 

populations, but it also reduces the ability of penguins to optimize their spatial configuration and, 

in doing so, may make them susceptible to critical collapse.  
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Chapter 4 - Self-aggregated pattern formation in seabird colonies drives hysteresis in 

fluctuating populations6 

 

Abstract 

Aggregations are common in ecological systems, and may be broadly classified as 

externally driven, through constraints such as resource availability, or self-organized, in which 

interactions between individuals drive aggregation. Self-organization has been studied in a 

variety of highly temporally dynamic systems, however its role in more slowly evolving systems 

has not been well considered. We demonstrate that the aggregations observed in colonially 

nesting seabirds are a convolution of both external forcing arising from spatially structured 

terrain, and slowly evolving self-organized dynamics. Using an individual-based modelling 

approach we demonstrate that the spatial configuration of seabird colonies is a function of 

stochastic events at the individual level, and that declining abundance can lead to fragmentation 

even in a homogeneous environment. Strong edge effects from heterogeneous predation at 

colony edges creates a positive feedback cycle involving declining abundance, spatial 

fragmentation, and accelerating population decline. This model provides a mechanistic 

understanding of complex spatial structuring in penguin colonies and suggests the possibility of 

critical collapse in seabird populations. 

                                                 
6 Author Contributions: (PM – Philip McDowall, HJL – Heather Lynch) Conceptualization: PM. Data curation: PM. 

Formal analysis: PM. Funding acquisition: HJL PM. Investigation: PM HJL. Methodology: PM HJL. Project 

administration: HJL. Supervision: HJL. Validation: PM. Visualization: PM HJL. Writing – original draft: PM HJL. 

Writing – review & editing: PM HJL. 
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Introduction 

Aggregations are observed across ecology, at macroscopic scales in the form of schooling 

fish (青木一郎 1982, Niwa 1994, Parrish and Edelstein-Keshet 1999), flocking birds (Emlen 

1952, Hildenbrandt et al. 2010) or herds of ungulates (Couzin and Krause 2003, Conradt et al. 

2009), through to microscopic scales such as bacterial aggregations (Ben-Jacob et al. 1994, 

Chowdhury et al. 2004) and, even down to pigmentation patterns within individuals (Murray 

1981, Manukyan et al. 2017). These aggregations arise through individual responses to external 

stimulus, such as the availability of resources, or through the interactions of individuals. Many of 

the most complex and dynamic aggregative systems, however, occur through the interaction of 

individuals independent of any global information about the aggregation as a whole (Couzin and 

Krause 2003). Systems in which aggregation arises from (often short-range, or ‘local’) 

interactions between individuals, independent of external stimuli, are characterized as ‘self-

aggregating’ (Rohani et al. 1997). Ecologists have long been fascinated with self-aggregating 

dynamics because even simple interactions can result in novel emergent properties, occurring at 

the level of the system rather than being specified at the individual level (Parrish and Edelstein-

Keshet 1999, Camazine 2003). For instance, spatial patterning that exists at the level of the 

system but is not imposed by the environment (Couzin and Krause 2003) would be considered an 

emergent property of a system. 

 While much work has been done to model dynamic self-organizing systems, such as 

schooling fish, the role of self-organization may be missed when a system’s spatial dynamics are 

slower than the period of observation. Colonial seabirds represent an extreme example, with 

spatial re-arrangement occurring on an annual basis and dynamics playing out over decades and 

even centuries. While the role of interactions in these systems has been considered from an 
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evolutionary point of view, the costs and benefits are usually calculated based on a static 

configuration of nests with little consideration for self-organization or other processes playing 

out over long periods of time. 

In seabirds, colonial nesting is almost universal, with over 95% of species demonstrating 

some degree of colonial nesting (Wittenberger 1985, Rolland et al. 1998). Previous definitions of 

colonial breeding have focused on nesting space as the limiting resource that spatially defines the 

‘colony’ as a biological unit (Wittenberger 1985, Kildaw et al. 2005), but this conception of the 

colony ignores the role of intraspecific interactions that may also drive spatiotemporal 

aggregation. Such aggregations are likely to result from a convolution of preference for terrain, 

with individuals selecting nesting locations based on the availability and suitability of nesting 

space, as well as self-aggregating dynamics driven by conspecific interactions. For many seabird 

species, colonization of new terrain is rare (Kildaw et al. 2005), and individuals may prefer to 

join large extant colonies rather than establishing new colonies. Despite decades of interest in 

coloniality as a biological phenomenon (Lack 1967, Wittenberger 1985), the role of conspecific 

interactions and their relationship to nesting terrain suitability, remains unclear. While 

interactions between individuals are functional, affecting reproductive success in the breeding 

season, interactions within these aggregations may become particularly important if the emergent 

properties of the system feed back into reproductive fitness of the individual and, by extension, 

of the larger breeding population. We use an individual-based model in which interactions play 

out on a real (empirically derived) high-resolution three-dimensional landscape to examine the 

factors leading to aggregation within seabird colonies, to explore the emergent properties of such 

spatial aggregations, and to understand its impacts on population dynamics.  
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 Our analysis is based on observations of Adélie penguins (Pygoscelis adeliae), which 

nest in densely aggregated colonies comprising as many as several hundred thousand nests. At 

the smallest spatial scale, that of individual nests, colonies consist of densely packed but 

regularly-spaced nests within a contiguous nesting area. Groups of these tightly-packed 

aggregations – each of which we call a 'sub-colony' – may occupy a contiguous area of terrain, 

such as an island or cliffside, to form a single 'colony' of seabirds. Individuals within a colony 

compete for a range of resources, from distributed resources such as prey, to local resources such 

as suitable nest sites and nesting material (Carrascal et al. 1995, Moreno et al. 1995, Hunter and 

Davis 1998). In addition, colonies suffer density-related costs to fitness such as increased 

chances of disease and parasite outbreaks (Tella 2002, Brown and Brown 2004, Lynch et al. 

2010, Rifkin et al. 2012) and, because large colonies attract more predators, increased predation 

(Emslie et al. 1995). There have been many attempts to explain the causative mechanisms of 

coloniality and the benefits that being in close proximity to conspecifics must confer; current 

theories involve information transfer about the quality and location of food resources (Bayer 

1982) or high quality nesting habitat (Doligez et al. 2002), the availability of extra-pair 

copulations (Wagner 1993), predator swamping (Hamilton 1971, Wittenberger 1985, Ainley et 

al. 2005), and collaborative predator defense (Anderson and Hodum 1993, Brunton 1997), all of 

which would imply self-organized aggregative dynamics with varying levels of environmental 

forcing. While these factors may be the ultimate drivers of self-organization within a breeding 

colony, the proximate causes of self- aggregations must be mediated by the process of nest site 

selection. Initial nest site selection is likely to be based upon natal philopatry or, in the case of 

migrants, information acquired from the nest site selections of other individuals within the 

colony (Zador et al. 2009). In subsequent years, however, the process involves only two choices, 
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the choice to change one’s nesting site from one breeding season to the next and, conditional on 

changing location, the choice of destination. Importantly, fidelity to a selected nest site from one 

breeding season to the next creates an ‘inertia’ that maintains the spatial arrangement of nests 

even as suitability changes.  

A large proportion of chick mortality events in Pygoscelis colonies are the result of 

predation by the Brown and South Polar Skuas (Stercorarius antarcticus and Stercorarius 

maccormicki) and Giant Petrels (Macronectes giganteus and M. halli) (Emslie et al. 1995). 

Predation occurs at the edges of sub-colonies (Eklund 1964, Spurr 1975) both due to the greater 

accessibility of nests at the edge (predators usually land and attack from a standing position) and 

the reduced ability of smaller numbers of penguins to collaboratively defend edge sites. In fact, 

predation on the exterior of penguin colonies may be almost eight times higher than that 

experienced in interior nests (Emslie et al. 1995), with similar edge effects reported for other 

colonially nesting bird species (Coulson 1968). It is often assumed that the benefits of 

coloniality, in this case protection from predation, outweigh the costs and that being part of a 

colony confers greater fitness. However, the benefits accrued for large populations imply 

positive density dependence at low abundance (an Allee effect). Reluctance to settle at the 

peripheries of a colony and reduced breeding success at edge sites may constrain colony 

establishment or hasten local extirpation. Importantly, these edge effects operate at the sub-

colony level, which suggests that Allee effects are not homogenous across a colony and that the 

optimal (predation-minimizing) arrangement in a homogeneous environment should be a single, 

circular sub-colony. Satellite observation of real colonies, however, reveal that colonies are often 

highly fragmented with many small, non-circular, sub-colonies in a complex spatial arrangement 

that does not solely reflect the underlying terrain. Understanding the mechanism creating these 
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complex patterns, recently revealed through aerial and satellite imagery, motivated the current 

study.  

 

Model description 

 

Here we use an individual-based model (IBM) to understand the linkages between 

individual-level behaviors and spatial patterning within an Adélie penguin colony7. This 

modelling framework easily incorporates interactions between individuals, and between 

individuals and their environment, allowing population level properties to emerge from 

individual level behaviors (DeAngelis and Grimm 2014). The individual-based approach is 

particularly suited to exploring questions with complex localized interactions between 

individuals and is therefore a tractable method to study spatial configurations of individuals 

within a population.  

Adélie nests are typically tightly packed at small scales, with inter-nest distances of 0.68 

m being highly conserved (mean = 0.68 m, sd = 0.09). We can therefore approximate continuous 

space as a discrete hexagonal grid, in which each cell represents a potential nest site. This 

approximation reduces computational complexity, incorporates the approximately hard-core 

repulsion between nest locations at short distance, a form of territoriality common in self-

aggregating systems (Camazine 2003), and allows us to model interactions among nest sites as 

being isotropic. 

We hypothesize that the spatial patterning observed in Adélie colonies results from both 

conspecific interactions and individual preference for suitable habitat and use a Bayesian auto-

logistic model of nest site occupancy to separate the effects of conspecific interactions and 

                                                 
7 Python code implementation available at https://github.com/phil-mcdowall 
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habitat preference. The auto-logistic model extends the traditional logistic model by 

incorporating an additional term which, for any given cell, is the proportion of the 6 neighboring 

cells which are occupied. Fitting this model requires information on both the location of penguin 

nests and the abiotic characteristics of available nest sites. We use a high-resolution digital 

elevation model (DEM), created through a photogrammetric process applied to aerial imagery 

captured at Beagle Island in the Danger Islands (McDowall and Lynch 2017, Borowicz et al. 

2018), as the basis for this model. In addition to the derived topographic data, the imagery 

provides the locations of nesting penguins, yielding very high spatial resolution data on both the 

position of individuals and the landscape they occupy (McDowall and Lynch 2017).   

Abiotic conditions at the nest site play an important role in reproductive success. While 

the Antarctic as a continent is, on average, very dry, the coastal regions where penguin colonies 

are found experience high levels of precipitation during the austral summer. In addition, 

temperatures are frequently above freezing, causing extensive snow melt, a high level of 

hydrological flow across the site, and frequent flooding of many potential nest sites. Nests that 

become flooded during the incubation phase are likely to be unsuccessful due to suffocation of 

the developing chick, while flooding occurring post hatching may result in the loss of the chick 

to hypothermia. Flow accumulation, a metric derived from the DEM which estimates the flow of 

water across the landscape, is used as a proxy for the likelihood of flooding for each nest site. 

Covariates used to model the probability of a nest sites being occupied include the DEM itself, 

which captures the role of nest elevation, the flow accumulation metric, and two other DEM-

derived products: slope, cost-weighted distance to shore. The cost-weighted distance input uses 

slope as a friction surface for weighting and provides a metric of the difficulty of access of a 

particular location on an island. Using this auto-logistic model, we find that both conspecific 
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interactions and habitat preference are involved in nest site selection, with individuals 

preferentially selecting locations that are surrounded by conspecifics and likely to remain dry 

through the breeding season (Fig. 4-2). 

We use the parameters of the best-fitting model and the DEM for Beagle Island to 

estimate the suitability of 1.8 million hexagonal cells across the landscape, each one of which 

represents a potential nest site location. Each of these cells is characterized by three state 

variables: abiotic quality derived from the auto-logistic model, current occupancy, and the 

proportion of the six adjacent locations that are also currently occupied. At each time step in the 

model these potential nest sites may be occupied by a single breeding individual. The model is 

initialized by seeding the landscape with a small sub-colony of individuals at a location that is 

selected with probability proportional to its quality. With the Allee effects introduced by Skua 

predation, new colonizations of Pygoscelis colonies are exceptionally rare. In fact, there has been 

only one known Adélie colonizations since 1900, and very few for the other Pygoscelis spp. 

penguins (Chinstrap and Gentoo) (Lynch et al. 2010, Lynch and LaRue 2014, Humphries et al. 

2017).  

 Adélie penguins form strong bonds with a partner and have relatively low levels of extra-

pair copulations. Additionally, there is a high degree of synchrony between the arrival at the 

colony of male and female birds (Davis and Darby 2012). In this model, we track only males in 

the population, who are reported to have the highest nest site fidelity, and assume that the actions 

of the other breeding partner are the same as those taken by the individual tracked in the IBM. 

Individuals are characterized by their age, reproductive history, and nest site location. The IBM 

uses an annual timestep, capturing four key processes within each year. Three of these, 

reproduction, nest-site fidelity, and nest site selection, occur during the 3-month breeding season, 
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while survival operates in the remaining 9 months of the year outside the breeding season (Fig 4-

1). 

 

Survival 

 

Age-specific probabilities for overwinter survival from year 𝒕 to 𝒕 + 𝟏 are modeled 

separately for immature (≤3 year old) and mature (>3 year old) individuals.  We model survival 

as the result of a draw from a Bernoulli distribution, where the probability of survival (𝑝𝑎,𝑡) for a 

given year (𝑡) is shared between individuals of each of the two age groups (𝑎).  

𝑠𝑖,𝑡 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑎,𝑡) 

In each time step of the model the probability (𝑝𝑎,𝑡) is drawn from a Gamma distribution for the 

appropriate age class. The hierarchical nature of this sub-model reflects the fact that survival is 

likely to be correlated between individuals in any given year in response to the conditions 

encountered during the non-breeding seasons. These distributions are parameterized using data 

from Ainley (2002), Hinke (2012) and Hinke et al. (2017). 

𝑝𝑎,𝑡 ~ {
𝐺𝑎𝑚𝑚𝑎(α =  10.82, β = 2.64)          𝑎 < 3

𝐺𝑎𝑚𝑚𝑎(α =  23.72, β = 9.87)         𝑎 ≥ 3
 

Adult overwinter survival is independent of the nest site selected; individuals who have died in 

the overwinter period are removed from the population at the start of each model year and their 

nest sites marked as unoccupied. 
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Nest Site Fidelity 

 

Pygoscelis penguins are believed to have a high degree of nest site fidelity, often 

returning to the same nest location year after year. We apply three different models of nest site 

fidelity: Total ‒ Individuals select a nest site and return to the exact same site each year; Partial ‒ 

Individuals return to their previous nesting location unless the previous two years have resulted 

in total failure to successfully fledge chicks, in which case they will relocate their nest to an 

unoccupied nest site within the colony; None ‒ Individuals demonstrate no nest site fidelity and 

select from any nest site across the landscape in each time step. While this final parameterization 

(no nest site fidelity) is biologically unrealistic for Pygoscelis penguins given known rates of 

natal philopatry and nest site fidelity, it allows us to demonstrate the impact of nest site fidelity 

on the spatial distribution of occupied nest sites. We compare these models on the basis of the 

similarity between the observed and simulated spatial patterns (see ‘Exploring emergent spatial 

patterning’) and select the partial nest site fidelity model as most producing spatial pattern most 

similar to that observed at Beagle Island. In contrast to the selected sub-model, total nest site 

fidelity resulted in populations that were under-aggregated relative to observed patterns. 

Additionally, this parameterization lead to unstable populations in which individuals remained in 

unsuitable nest locations and repeatedly failed to reproduce. The sub-model with no nest site 

fidelity lead to populations that were over-aggregated compared to observed patterns, with 

individuals nesting in large contiguous units. 

 

Nest Site Selection 

 

Nest site selection is based on the observed preferences of individuals in the Beagle 

Island colony, using the habitat suitability and strength of conspecific interaction estimated by 
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our auto-logistic model (Fig 3-2). In versions of the model parameterized with partial nest site 

fidelity, each individual that has decided to move is selects the best available nest site within a 

set search radius. If there are no unoccupied nests within this radius, the search radius is 

extended to double the original radius, which corresponds to an equivalent search operating from 

the exterior of the currently occupied sub-colony. For individuals entering the breeding 

population for the first time, we use the natal site as the origin for their search. The model 

assuming no site fidelity, by contrast, assumes individuals sequentially select nest sites from all 

available sites, with no preference for a previously occupied location. 

 

Recruitment 

 

While Pygoscelis penguins are capable of fledging two chicks per nest in a given year, as 

we model only the half the population, considering nests rather than both parents, recruitment is 

modelled as the result of a Bernoulli trial in which the probability of a nest being successful is a 

function of the age of the parent, and the suitability of the nest location. We fit a logistic 

regression to available data on recruitment for known aged individuals to generate the expected 

probability of success for individuals of a given age (from age 1 to 8+).  The probability (𝐹𝑎) of 

an individual of age ‘𝑎’ successfully fledging a chick is calculated as 

𝐹𝑎 = 
1

1 + 𝑒−5.239+0.928𝑎
 

 The probability provided by this logistic regression are further modified by a factor that 

represent the biotic and abiotic influences resulting from nest site selection. We apply nest-site 

quality and neighborhood occupancy as multiplicative modifiers to the maximum reproductive 

success by age that are described by the logistic regression based on observed data. Additionally, 

we added a logistic density dependent term to recruitment that regulates population size. Several 
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authors (Ashmole 1963, Coulson 1985, Ainley et al. 1995) suggests a relationship between 

foraging range and maximum colony size in a range of seabird species, suggesting that prey-

limitation for these central place foragers is an important aspect in the regulation of colony size. 

We apply density dependence to reproductive success rather than survival, as outside of the 

breeding season Pygoscelis penguins cease to operate as central-place foragers and may be 

widely dispersed, preventing local prey depletion.  

 The probability of the 𝑖𝑡ℎ individual successfully contributing a new individual to the 

population is therefore 

𝑝𝑖 = 
𝑘 − 𝑁𝑡
𝑘

 𝐹𝑎𝑞𝑖 

Where 𝑘 is a parameter controlling density dependence, 𝑁𝑡 is the size of the population at 

timestep 𝑡, 𝐹𝑎 is the age-specific reproductive probability for the 𝑖𝑡ℎ individual, and 𝑞𝑖 is the 

suitability of the nesting location of the 𝑖𝑡ℎ individual. We estimated a value for k that provides 

reasonably sized populations, while limiting the population to sizes that could be simulated on a 

reasonable timescale. 

 While many of the parameters in the model are based either on values reported in the 

literature or on the parameters estimated in the auto-logistic model, we have no direct measure of 

the behavior used in searching for a suitable nest site. We use a grid search to find values for 

these parameters that best match the empirical spatial pattern, resulting in an initial search kernel 

of 2 nest units. Changing these parameter combinations in the model alter the results 

quantitatively, but not qualitatively. 

 

 

 



 

79 
 

Exploring emergent spatial patterning 

 

To assess the ability of our model to replicate the spatial population dynamics of real 

penguin colonies, we use the pair correlation function (pcf), which measures the average number 

of nests at a distance r (in contrast to the commonly used Ripley's K function, which counts 

points within a range r) from a focal nest. The pcf is typically calculated for a range of 𝑟 values, 

capturing spatial pattern operating at different spatial scales. The function pfc(r) can be 

compared against its equivalent under any given null model, allowing the properties of spatial 

distributions to be compared. In our discretized hexagonal lattice, nest sites adjacent to a focal 

nest can be visualized as a series of expanding 'rings' and r indexed in units of inter-nest 

distances. We compare the observed pcf(r) from the IBM to the observed spatial pattern of the 

colony at Beagle Island (Fig. 4-2) using root mean squared error (RMSE) where RMSE is 

defined as 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑𝑒𝑖𝑟

2

𝑛

𝑖=1

 

where 𝑒𝑖𝑟 is the error between the observed and simulated values of pcf(r) in the 𝑖𝑡ℎ simulation, 

across all 𝑛 simulations of a given model parameterization. 

 Our IBMs produce spatial patterns that are, on average, more densely aggregated than the 

observed colony. However, the degree of clustering is highly variable over time, and the pcf(r) 

values calculated for the real colony are within the 95th percentile envelopes of the simulated 

results. By exploring the correlations between the pcf(1) and growth rate integrated over a range 

of timespans, we observe that the spatial pattern in this model is best predicted by the growth rate 

over the previous 12 timesteps (Fig 4-2-C).  Linear regression of the error in PCF at each time 

step of the simulation against the growth rate over the last 12 timesteps indicates that our 
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simulations are most similar to the observed pattern in periods following population decline. 

Regression of the bias in the error confirms that following increases in population size, the 

simulated patterns are more highly clustered than in the observed patterns. Regression of the pair 

correlation function at radius 1 (Fig 4-2-D) against the proportional change in population size 

over the previous 12 timesteps indicates that declines lead to a fragmented colony, with 

individuals having fewer immediate neighbors on average. Across simulations, declines in 

abundance lead to fragmentation exposing individuals to increased edge effects, while increases 

fill space and result in larger, more contiguous sub-colony units with fewer individuals on the 

peripheries of colonies. 

 

Landscape Structure 

 

The landscape on which we simulate populations is itself highly spatially structured. To 

understand how the landscape affects rates of fragmentation of sub-colonies, we ran additional 

simulations in which the landscape is spatially homogenous with suitability set to the median 

value of the observed landscape suitability’s at Beagle Island. Spatially heterogeneous landscape 

features provide a template for the fragmentation of colonies, which typically fracture along 

contours of low habitat suitability. As a result, high quality sites are occupied for a larger 

proportion of the time (Fig 4-3). However, simulations in which the landscape is homogeneous 

(no terrain) illustrate that the template provided by landscape terrain is not required for 

fragmentation to occur, and populations under homogeneous conditions also fragment under 

decline due to strong conspecific interactions coupled with nest-site fidelity. 
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Perturbation 

 

To understand the effects of spatial pattern on the stability of the population, we 

examined the effects of spatial configuration independent of population size. We selected 

multiple time points in the best fitting simulation at which the population size was identical 

(horizontal line in Fig. 4-4), but the spatial configuration was different. We use the state of the 

simulation at these points as the initial condition for an additional simulation. For each of these 

simulations we apply negative perturbations to the population by reducing the growth rate for 

five consecutive time steps, achieving an approximately 25% reduction in population, and record 

the time taken for the population to recover to its initial level. We found that the time taken for a 

population to recover to its initial size is related to the spatial configuration of the population 

(Fig. 4-4), consistent with the hypothesis that more fragmented populations are less resilient to 

perturbation. Slowed responses to perturbation in systems may also be an indicator that these 

systems are closer to a critical tipping point (Scheffer et al. 2012).  
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Figure 4-1. Schematic representation of the individual-based model of Adélie coloniality. 

Decisions about nesting location, and subsequent reproductive success are spatially explicit and 

occur within the breeding season (bounded by red dashed line), while survival occurs outside the 

breeding colony in the period between annual breeding.  
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Figure 4-2. Population level trends and spatial pattern captured by our individual-based model. 

A) Pair correlation function (pcf) at radii 1-10 for the simulations (boxplots) and the pcf 

observed at the Beagle Island colony (gray points). B) Effects of growth rate (integrated over 12 

timesteps) on the pcf for simulated results. Declines in population size result in a reduced value 

of pcf(radius =1), indicating reduced aggregation following decline. C) An example trajectory 

from a single run of the model. Color indicates the root mean squared error between the 

simulated pcf and the observed at Beagle Island, indicating that our model produces results most 

like Beagle Island following periods of decline. D) Correlation between population growth rate 

over lagged periods (x-axis) indicating that spatial pattern is best predicted by the change in 

population size over 12 timesteps.   
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Figure 4-3. Effects of topography on the fragmentation of colonies A) Habitat suitability for 

nesting Adélie penguins at Beagle Island in the Danger Islands group. B) Heatmap of occupancy 

of nest locations (darker blue nests occupied more frequently), demonstrate the role terrain plays 

as a template for fragmentation of colonies. C) Heatmap of occupancy of nest locations with 

preference for terrain removed from the model. While colonies still fragment, the spatial 

patterning is independent of location. 
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Figure 4-4. Distribution of time taken for populations to recover to initial starting size after 

perturbation, given differing initial spatial configurations. Vertical lines represent the median 

time to recovery, while boxes represent the interquartile range and horizontal lines represent the 

upper and lower quartiles. Compact, highly clustered configurations characterized by higher 

initial pair correlation functions (top) recover twice as quickly as those that are in a fragmented 

state before perturbation (lower pair correlation function -bottom). 
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Figure 4-5. Trajectory of a simulated population (Population size axis) over time (Timestep axis) 

illustrating the additional dimension (pcf-axis) introduced by spatial configuration (pcf(1)) in a 

population in which spatial configuration affects population vital rates. 

  



 

87 
 

Discussion 

Our simulated populations demonstrate that with only a simple set of assumptions about 

the processes occurring at the individual level, we observe both complex pattern formation, and 

strong effects of spatial pattern on population level dynamics. Nest site fidelity and conspecific 

attraction appear to drive fragmentation in sub-colonies as populations decrease (Fig 4-2). This 

fragmentation exposes more individuals to exterior sites and this in turn reduces the average 

reproductive success of the population. The result is a feedback loop that may drive populations 

to decline when fragmentation (likely to accumulate over the history of the colony) is high 

enough. Experiments with perturbations to this system illustrate that recovery may be impeded 

by the spatial configuration of the colony, and that sub-optimal arrangements of individuals in 

the colony may limit the system’s ability to respond to conditions causing reduced reproductive 

success or high mortality. Additionally, when the system has degraded to a sub-optimal 

arrangement, there is no clear mechanism for sub-colonies to recombine into contiguous units 

without the population undergoing a growth phase. As such, abrupt declines followed by periods 

of stability may result in the persistence of sub-optimal arrangements, resulting in a colony that 

is more prone to decline. While these results indicate that the colony observed at Beagle Island is 

likely to have undergone periods of decline in the past, review of historic records indicates that 

this population may have been relatively stable for the past decades. Where we observe 

fragmented patterns, we may be observing the result of declines at any point in the colonies 

history. Due to the scarcity of new colonization events, observation of a colonies initial phases of 

growth may be impossible. 

 While fragmentation, or splitting, has been demonstrated in self-aggregating systems in 

which repulsion between individuals is balanced by attraction at other spatial scales (Chen et al. 
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2012), our IBM suggests that in a dynamic system such repulsive forces are not necessary for 

fragmentation. While interactions in real colonies may include intermediate or long range 

repulsive forces and are likely more complex than in our simulation, the simple mechanisms we 

explore are well supported by biological studies on colonial seabirds and sufficient for pattern 

formation. Conspecific attraction, often assumed to drive aggregative feedback loops, may also 

be instrumental in fragmentation when the ability to reorganize is limited by nest site fidelity.   

Models of population dynamics often treat a population as a single well-mixed group 

whose dynamics are memoryless Markov processes and thus do not display long-range 

‘memory’ of past dynamics. Our results demonstrate that when interactions between individuals 

or between individuals and their environment are spatially structured, the configuration of 

individuals within the environment represents an additional system variable. Routes through this 

higher dimensional space may be equally deterministic, but when projected to a lower 

dimensional space in a non-spatial setting, we may observe hysteretic effects. In systems with a 

strong coupling between individual level spatial configuration and population level dynamics, it 

may be possible to make inferences about the state of one level of the organization from the 

knowledge of state of the other level (DeAngelis and Grimm 2014). Understanding the temporal 

dynamics of populations requires long-term datasets that can be expensive and time consuming 

to collect. If the data are intended to be used to make management decisions based on the trends 

of some population, by the time required to collect a time series of sufficient length is often too 

long to be of practical benefit. The feedback loops between population size and spatial 

configuration maybe particularly important when environmental variability is high, as the 

stochastic degradation of spatial optimality may result in unstable populations which, when 

assessed via population size, appear to be stable.  



 

89 
 

If spatial configuration can be used as an indicator of population trend, we may be able to 

use it to rapidly identify populations that may be undergoing change rather than investing in 

futile datasets. While the drone based imagery used in this model to capture spatial pattern that 

was used in this model requires visiting the colony, it is possible to capture the shape of the 

colony using high resolution satellite imagery in which the outline of the colony is visible due to 

guano deposition (LaRue et al. 2014). This may allow us to calculate additional metrics of 

stability for the system to improve our predictions of past and projected future population states. 

While our IBMs illustrate that simple, individual level mechanisms may be responsible for 

macro-scale pattern formation, they also suggest that our current predictive ability in these 

systems may be low. The sheer number of possible spatial configurations and the number of 

accumulating individual level decisions makes predicting spatial pattern difficult. The role of 

spatial configuration may complicate our ability to forecast future abundance. 

An interesting aspect of our results is the distribution of birds by age across the colony. 

Even with no explicit competitive advantage for older breeders, we see that older birds are more 

likely to be found within the interior of the colony with the younger birds on the outside. This 

'central-periphery' distribution, either in terms of quality or age (which is often a proxy for 

quality) has been reported in several studies (Minias 2014) and interpreted as the result of 

competitive advantage. Our model suggests that this age structure within the colony might be an 

emergent property of individual level choices about nest choice in the face of nest site fidelity 

and the desire for complete neighborhoods. 

Finally, it is worth noting that while terrain clearly influences the probability of 

occupancy for each potential nesting site, long-term occupancy changes habitat suitability. 

Pygoscelis penguins modify their environment through the accumulation of nesting materials, 
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and through the stabilization of soil through excretion of guano. This biogeomorphological 

feedback loop drives auto-correlation in occupancy as individuals improve the quality of their 

nest site, encouraging return to the same nest site, as well as encouraging others to occupy the 

same location in future generations. This feedback loop amplifies the importance of the history 

of a colony on its spatial configuration and potential future growth rates. 

In our model, the formation of new sub-colonies is driven by declines in population, 

however this mechanism does not explain how brand-new colonies (e.g., on a previously 

unoccupied island) arise. The process of colonization, especially of sites not occupied by other 

penguin species, is unknown because it is virtually never observed, though we know that over 

geological time, Adélie penguins have shifted their ranges and thus must be capable of de novo 

colonization of new habitat. Regardless, the barriers to colonization are clearly related to the 

Allee effects associated with predation, and our model may shed some new light on the processes 

underlying these important but very rare events. 

We have demonstrated that relatively simple assumptions about individual level 

behavioral choices may lead to emergent properties at the population level, leading to complex 

population trajectories that may not be adequately captured by point models of populations. Due 

to linkages between spatially structured habitat and individual behavior, stochastic processes that 

may impact the trajectory of a population over many subsequent timesteps, and the difficulty in 

capturing all the behavioral choices made and the distribution of behaviors amongst individuals, 

quantitative prediction from this type of model is likely to be difficult. However, we have 

demonstrated that such simple assumptions are able to reproduce the patterns seen in real 

populations (Grimm and Railsback 2005), and that spatial configuration is indicative of temporal 

dynamics and may provide an early warning signal for the health of the population. Given these 
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likely linkages between population level process and spatial pattern, attention should be paid to 

the spatial configuration of colonies under existing monitoring programs. The adoption of UAV 

census methodologies which provide the spatial resolution to resolve individual birds (Borowicz 

et al. 2018) should be a priority as, in addition to improving the efficiency and potential accuracy 

of abundance estimates, the information provided on the locations of nests may be invaluable for 

testing hypotheses about decline driven fragmentation, and for identifying those colonies that are 

at greatest risk of decline. While the application of this technology is in its infancy, and the 

survey this work is based on (Borowicz et al. 2018) represents a single snapshot of colony spatial 

patterning, with concerted effort to produce annual time-series of such high-spatial resolution our 

potential ability to understand the links between process and pattern should be greatly enhanced. 

While the data produced through UAV based monitoring is exceptional, it’s adoption as a 

continent wide monitoring tool is impractical, however understanding the links between process 

and spatial pattern provides two major benefits. The encoding of process into spatial pattern 

should allow us to use opportunistic and temporally patchy surveys to identify those colonies 

undergoing change in the absence of long term time-series. Even in the absence of the highest 

spatial resolution data, it may be informative to examine the shapes of colonies at lower spatial 

resolution, substituting the pair correlation function for courser scale spatial metrics. LaRue et al. 

(2014) demonstrated that satellite based remote sensing provided sufficient resolution to identify 

the areas occupied by Pygoscelis nests through the spectral signature of the guano stain that 

accumulates during the breeding season. While this approach does not allow us to resolve 

individual nests, this type of data set may provide informative metrics such as the ratio of area to 

perimeter of the guano stain, or the connectivity of sub-colony units, both of which are likely to 

decline in response to declining population, and subsequently, may be indicators that the 
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populations is at risk of further decline. While these metrics may respond on a slower time scale 

than individual level features, remotely sensed data may allow for better temporal resolution and 

coverage of a wider range of colonies, allowing us to augment continent wide monitoring of 

nesting populations with additional information on the spatial configuration of colonies, and to 

potentially fit statistical models linking these augmented datasets with population level trends. 

  



 

93 
 

 Chapter 5 - Combining UAS based Spectrometry with 3D model reconstruction8 

 

Abstract 

The rapidly decreasing cost and increasing capabilities of unmanned aerial systems 

(UASs), in combination with the latest generations of miniaturized sensor packages, provides the 

potential for a new scale of remote sensing in ecology. Through the application of modern 

computer vision techniques, UASs can be used to produce high resolution topographic data from 

set of overlapping aerial imagery. When combined with additional sensors, this presents a novel 

opportunity for exploring the intersection of structure and function. There has been considerable 

interest in UAS based spectral readings in precision agriculture, but the methods for spatial 

registration of this data, particularly in the case of non-imaging sensors, are not well developed. 

We present a method for integrating high spectral resolution data with high spatial resolution 

three-dimensional topographic data, that allows for variable geometries of sensor layouts, 

correction for instability in the UAS platform, and for collection and processing of spectral data 

in off-nadir orientations.  

  

                                                 
8 Author Contributions: (PM – Philip McDowall, HJL – Heather Lynch): Conceptualization: PM. Data curation: 

PM. Formal analysis: PM. Investigation: PM. Methodology: PM. Supervision: HJL. Validation: PM. Visualization: 

PM. Writing – original draft: PM. Writing – review & editing: PM HJL. 

Thanks to Shawn Serbin, Meng Ran and Andrew McMahon at Brookhaven National Lab for providing the data used 

in this analysis. 

Funding provided by the National Science Foundation Office of Polar Programs (NSF/OPP-1255058) and the 

Institute of Advanced Computational Science at Stony Brook University. 
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Introduction 

Recent advances in the capabilities of Unmanned Aerial Systems (UASs) have resulted in 

systems with increased capacity to carry weight, increased ease of use, and rapidly lowering 

costs, making them an increasing useful tool for ecologists. One of the primary functions of these 

systems has been in census work, utilizing the high-resolution cameras that can be carried to 

capture aerial imagery in a rapid, and cost-effective manner (Borowicz et al. 2018). In addition to 

utilizing the imagery collected by these systems directly, a computer vision algorithm, Structure-

from-Motion (SfM) can be used to reconstruct the 3D structure of the surveyed scene in very 

high (centimeter scale) resolution (McDowall and Lynch 2017). SfM algorithms are based on 

triangulating matched points between sets of overlapping images, allowing the estimation of 

three-dimensional structure from two-dimensional image sequences. This method differs from 

stereo-matching algorithms traditionally used to create digital elevation models (DEMs), and 

from more common photogrammetric methods, in that the camera position and scene geometry 

are solved simultaneously, negating the need for data on camera position, or three-dimensional 

control points. This is achieved using algorithms which track multiple correspondences between 

multiple overlapping, offset images, and solving a series of equation which link the position of 

points in images, through a model of the cameras optics, to the locations of those pixel in a three-

dimensional coordinate system (Torr and Zisserman 1999). While the three-dimensional model 

that is created is unscaled and arbitrarily orientated, the addition of supplementary information, 

such as ground control points of known positions within the scene, or the locations of the 

cameras in a real-world coordinate system, allows us to reconstruct a scaled, georectified three-

dimensional model of the scene. The resulting model is similar in nature and resolution to point 
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clouds created by LiDAR systems, however the cost of the cameras needed for SfM are often 

significantly lower (Fonstad et al. 2013). The information that can be extracted from such high 

resolution topographic surveys is only beginning to be explored, but this approach has already 

been applied to modelling the spatial distribution of a species within the landscape, and to 

quantifying features such as canopy cover and structure in vineyards and forests (Mathews and 

Jensen 2013, Wallace et al. 2016).  

With the increasing payload capabilities of modern UASs, and the constantly decreasing 

size and weight of various sensor packages, the potential for creating high resolution general 

surveying tools is increasing. The combination of structural information provided by SfM and 

additional information may allow us to gain a better understanding of how structure influences 

function and may allow us to refine the resolution of data collected while greatly expanding 

spatial coverage. One of the sensor packages with the most potential in UAS based ecology is 

small form-factor spectrometers which are now available at weights less than 250g, far within 

the capabilities of many commercially available UAS systems (Burkart et al. 2014).  There are a 

range of commercial available packages, including light-weight multi- and hyper-spectral 

cameras, as well as miniature non-imaging spectrometers, providing options that can cover a 

wide variety of wavelengths, from ultraviolet, through the visible spectrum, to near-infrared. 

Spectral information can greatly enhance our understanding of the function of ecosystems 

through correlations between derived indices calculated from spectral data with known functions. 

Spectral data from satellite and manned aerial platforms has been applied extensively in ecology, 

with applications including estimating vegetation biomass, thematic classification of landcover 

(Cohen and Goward 2004), mapping the locations of invasive species (Ustin et al. 2002, Hestir et 

al. 2008, He et al. 2011) and determining species compositions (Martin et al. 1998). 
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Additionally, ground based spectrometers have been applied to problems such as measuring the 

levels of photosynthetic pigments in the intertidal zone (Carrère et al. 2004)  A common use of 

spectral data is in the calculation of indices such as the Normalized Difference Vegetation Index 

(NDVI). NDVI uses the ratio of the difference of the recorded red and infrared radiances, over 

their sum, to give a single metric of spectral characteristic which normalizes the effect of solar 

zenith angle. This derived metric correlates strongly with net primary productivity and absorbed 

photosynthetically active radiation (Tucker 1979). There are many such vegetation indices, 

formed by ratios, differences, or linear combinations of bands in spectral data (Ye et al. 2008), 

all of which may correlate with some aspect of a vegetation's physical properties.  In addition to 

information on the functional nature of the ecosystem, spectral information can be applied to 

thematic mapping, allowing the easier identifications of different types of ground cover, for 

instance through the detection of distinctive spectral patterns of vegetation or water. 

While the spatial resolution of satellite-based sensors has been increasing, the readings 

available from these platforms are relatively course, with resolutions typically in the range of 10s 

of meters. Additionally, these platforms suffer from low temporal resolution, with the 

availability of data dependent on the orbit of the satellite. In the best case, data are available on a 

daily time scale with low spatial resolution. While manned aerial platforms can both increase the 

spatial resolution of data available, and allow data to be collected when required, these systems 

may be prohibitively expensive. As such, interest in UAS-based spectrometry is rapidly 

increasing, particularly in the field of precision agriculture (Link et al. 2013), and solutions exist 

to combine 3D scenes with readings created using multi- and hyper-spectral camera systems 

(Aasen et al. 2015). However, the use of imaging sensors often limits the available spectral 

resolution, with most systems offering 10’s or low hundreds of spectral bands, in comparison to 
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1000+ for a non-imaging system. This lack of spectral information may reduce the inferences 

that can be drawn from the resulting dataset. 

 Recent work has demonstrated the potential of mounting the latest generation of 

miniature, non-imaging spectrometers on UASs, providing increased spectral resolution at the 

cost of spatial resolution. The data recorded from these systems have been shown to have a high 

level of correlation with calibration readings taken on the ground. However, the systems 

currently employed lack the ability to combine 3D structure with this higher spectral resolution 

data. Additionally, previously presented methods have assumed that the readings collected by the 

spectral sensor are captured on-nadir, relying on the stabilization of the aerial platform by its 

internal navigational hardware and software, or the addition of a stabilizing gimbal. However, in 

forward flight the UAS platform is rarely level, and making assumptions about the orientation of 

the sensor may result in large errors in registration between the reading and the ground plane. 

Here we present a method to project the data collected from non-imaging spectrometers to a 3D 

model created through SfM, utilizing the refined estimates of location and orientation derived 

during processing in an attempt to mitigate against projection errors. 

 

Methods 

We used data collected by the Terrestrial Ecosystem Science & Technology group at 

Brookhaven National Laboratory. These data were collected using a CarbonCore Cortex UAS in 

an octocopter configuration, carrying a high-resolution digital camera and a light-weight 

OceanOptics USB2000+ spectrometer, both of which were controlled and synchronized by a 

Raspberry Pi connected to the UAS's flight controller. In addition to the spectrometer mounted 
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on the UAS, this system employs a second, upward facing, spectrometer which collects 

concurrent spectral readings allowing readings to be adjusted for solar irradiance. The downward 

facing spectrometer is mounted on the same gimbal system used to orient the camera, allowing 

us to use the camera position estimated through SfM to orient the spectrometer readings relative 

to the 3D reconstructed surface. We used an adjustable collimating lens, which allows the field 

of view to be set between 0° (total collimation) and 45°, providing adjustments for the optimal 

tradeoff between collection efficiency and spatial resolution. In the readings presented here, the 

collimating lens was set to a field of view of 14°.  

While there are a range of software products available for SfM processing, both open 

source and proprietary, we used the commercial package, Agisoft Photoscan for the 

reconstruction step. Our workflow would be equally applicable to other reconstruction packages 

that allow the export of the three-dimensional model and the estimated camera locations.  The 

initial result of processing using SfM algorithms is a three-dimensional point cloud. These point 

clouds may be very dense, with a point for each pixel that can be matched between at least 

images. When flight profiles are designed such that there is overlap between multiple images, 

this may result in a point cloud density that is greater than the pixel resolution of a single image. 

The potential density of this point cloud makes it computationally difficult to work with, 

however methods exist to create a 3D triangulated mesh from these point clouds, aiming to 

reconstruct the surface from measured points on the surface (Fabio 2001). We exported the 

results of surface reconstruction as a mesh, represented as a collection of point vertices in x,y,z 

space, which are grouped together to form the faces of a polygonal mesh, significantly reducing 

the computational burden for projection of spectrometer readings to the 3D scene. 
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While the UASs navigational systems include an inertial measurement unit (IMU) and 

GPS which give an estimate of the location and orientation of the platform throughout the flight, 

our main concern when combining results from the spectrometer and scene reconstruction is 

potential registration errors between the two data streams. To minimize these potential 

registration errors, we use a control system that synchronizes the capture of images for SfM, and 

the collection of spectrometer readings, and then use the location and orientations estimated as 

part of the SfM reconstruction process for registration of the spectrometer data. The imagery, 3D 

models, and projected spectral data are scaled and georectified to known ground control points, 

providing a final product in a real-world coordinate system. 

We modeled the spectrometer reading as integrating surfaces which intersect a conical 

beam from the spectrometers fiber optic (Fig. 5-1), with angle equal to half the field of view of 

the fiber optic or lens. To project this beam onto the 3D model, we find the spatial intersection of 

this conical beam and the vertices of the surface model created through SfM9. This allows us to 

identify a set of vertices of the model which may have contributed to the recorded spectral 

reading. By testing for an intersection between a vector projected back from a vertex to the 

sensor location, and the 3D surface, we can remove vertices from this set that are occluded from 

the reading. We attached the corresponding spectra to each of the selected vertices, and 

additionally attached the distance between the vertex and the sensor.  

 The radius of an on-nadir reading over a planar surface is ℎ tan (𝑥/2), while the area 

covered is given by π (ℎ tan (
𝑥

2
))

2

, where 𝑥 is the field of view of the spectrometer, and ℎ is the 

height above the surface. For a typical flight altitude of 30m and field of view of 14°, this results 

                                                 
9 Implementation available at https://github.com/phil-mcdowall 
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in a circular reading with radius 3.6 m, with an area of 42 m2. The strength of our method of 

projecting is that it allows us to deal with readings taken off nadir and over non-planar surfaces, 

allowing us to take readings of different aspects of the three-dimensional scene. While we utilize 

a setup with the spectrometer mounted in the same orientation as the camera, our method allows 

for an offset between the position of the camera and the spectrometer reading, permitting the 

system to be calibrated for different configurations. In addition to allowing different 

configurations of mountings on the UAS, we can modify the beam radius to specifications of 

other systems by altering the radius of the conical beam. 

The resulting dataset is a three-dimensional mesh in which those vertices which were 

within the projected cone from the spectrometer reading contain corresponding spectral 

information. The vertex data may be projected to a planar form using an orthographic projection, 

providing data in a similar form to other applications of UAS based spectrometry, and allowing 

the data to be integrated in to more traditional remote sensing pipelines. We can then apply any 

existing corrections or spectral processing algorithms on this dataset, providing any of the 

derived metrics and indices available from other spectral datasets. 

 

Results 

In some cases, the assumption that readings are collected on nadir is reasonable. 

However, in the majority of readings the footprint calculated using the orientations estimated 

through SfM results in a significant difference between the two estimation methods (Fig. 5-2). 

For a collection of 346 readings taken over two flights, we found that the median difference 

between the centroids of the footprint estimated on-nadir and the footprint corrected for 
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orientation was 5.2 m, with a standard deviation of 2.8 m. The largest difference between two 

corresponding centroids was 10.86 m, or 124% of the radius of the on-nadir footprint. At a flight 

height of ~30 m, this resulted in no area of overlap between the two estimated footprints. This 

level of error can occur with relatively small changes in orientation of the UASs gimbal, with a 

difference of 7° being sufficient to result in no overlap. The 346 estimated footprints have an 

average area of 34 m2 (standard deviation 4.5 m2), which is slightly larger than the 32m2 

estimated using the assumption of on-nadir readings. The geometry of the projection means that 

off-nadir readings will always have a larger footprint than those collected on-nadir (except in 

cases where there is occlusion), and as such readings should be taken orthogonal to the surface of 

interest to maximize spatial resolution.  
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Figure 5-1. Schematic of UAS as a personal scale remote sensing platform. a) Incorrect 

assumptions about the orientation of sensors may result in significant spatial registration errors, 

and attributing readings to surfaces which do not overlap the surface being read. b) The ability to 

use sensors in off-nadir orientations allows for novel survey plans, such as vertical profiles. 
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Figure 5-2. Orthophotos created from 346 UAS images collected during two flights by the 

Terrestrial Ecosystem Science & Technology group at Brookhaven National Laboratory. The 

location of the UAS platform at the time of each measurement is shown as a green dot. Under the 

assumption that spectrometer measurements are made on-nadir, the footprint of these readings 

would be centered on the UAS location. White circles represent the footprints calculated through 

the orientations estimated during 3D reconstruction, while the white lines indicate the difference 

between the centroids of the two footprints. 
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Conclusions 

One of the primary issues with combining remotely sensed spectral data and measurements 

of ecological function collected in the field is that there tends to be a mismatch in the scale of these 

datasets, with remote sensed data integrating readings across pixels covering >100 m2, while 

measurements of ecological function taken in the field may be point measurements. When there is 

a high degree of homogeneity in the spatial distribution of ecological function, this scale mismatch 

may be significant and individual pixels in the remotely sensed dataset may represent the 

contribution of multiple sub-pixel scale objects. While the effects of spectral-mixing can be 

modelled, and attempts made to separate out the contributing spectra, increasing the spatial 

resolution of data may be preferable. In addition to increasing resolution, UASs allow for much 

greater temporal resolution and fine control over the surveying period. This is important both for 

survey design, and for calibration of the remotely sensed data, as the use of UASs allows for survey 

data and calibration data to be collected in the same temporal reference, reducing potential 

mismatches. 

By bringing this technology to a small scale that provides high spatial resolution we can 

begin to better understand the distribution of function within the ecosystem. However, as we have 

demonstrated, operating at these small scales brings additional technical challenges. While 

traditional aerial and satellite platforms carry high quality IMUs and have higher inertia and 

stability due to their mass, UAS platforms are less stable and the sensors that position the gimbal 

used to stabilize gimbals may drift during operation, leading to readings being unintentionally 

collected off-nadir. By utilizing the gimbal orientations estimated during SfM we can attempt to 

correct for this drift and can also plan data collection missions in which readings are intentionally 
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taken off-nadir, for instance allowing vertical profiles of vegetation to be collected. It is important 

to note that the orientation of the gimbal between readings is non-independent, with a high degree 

of temporal (and therefore spatial) auto-correlation in the angle off-nadir. These errors tend to 

accumulate over the course of a flight (gimbal drift), and as such, under the assumption that 

readings are taken on-nadir, the resultant errors will be spatially heterogeneous. 

Our method for projecting spectral data represents an improvement over the assumptions 

previously made with regards to the orientation of the sensor, however further work is required in 

modelling the contribution of different vertices to the spectral reading. Our method should provide 

sufficient information for the contribution of vertices to be modelled, as it provides the distance to 

the sensor, the angle between the sensor and the normal of the recorded vertex, and the density of 

vertices in each reading. One of the benefits of this approach to projecting spectral data is that we 

can calculate the slope and aspect of the points that contribute to the integrated reading. This 

information could then be used, in combination with supplementary information on the orientation 

of illumination at the time of data collection, to apply topographic corrections to the spectral 

information. Topography influences the local illumination of a surface, and the radiance of the 

surface may vary if oriented towards or away from the incident sunlight. 

In addition to 3D structure, the visual information present in the original images, and the 

spectrometer data, modern UASs may be equipped with additional sensor packages such as 

thermal imaging cameras. While some of these datasets may be integrated through existing 

methods such as directly through the SfM pipeline, or through registration in a post-processing 

step such as feature matching (Jakob et al. 2017), the method we have presented here could be 

generalized to alternative sensors in the future, potentially allowing for novel classification of 

ecosystem function at very small spatial scales. 
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Appendix 

Orthorectification of Point Process Models 

Implementing simulations of point processes on surfaces 

The following sections provide R code to simulate Poisson Point Processes over parametric and 

rasterized surfaces. 

For a parametric surface of the form 𝑧 = 𝑓(𝑥, 𝑦): 

1. Define a function 𝑔(𝑥, 𝑦) such that 𝑔(𝑥, 𝑦) = 𝜆√1 + (
𝜕𝑓

𝜕𝑥
)
2

+ (
𝜕𝑓

𝜕𝑦
)
2

 , where 𝜆 is the 

intensity of the point process on the surface. 

2. Generate a set of points uniformly randomly over the domain 𝑊 with intensity equal to 

the maximum of 𝑔(𝑥, 𝑦) over the region 

3. Calculate 𝑔(𝑥𝑖 , 𝑦𝑖) for each point 

4. Accept points with probability equal to 
𝑔(𝑥𝑖,𝑦𝑖)

𝑚𝑎𝑥𝑖∈𝑊𝑔(𝑥𝑖,𝑦𝑖)
 

Create a function f(x,y) which returns the elevation value z. 

SINFun = function(x,y){ 

  return(sin(x)*2) 

} 

Define additional functions which return the derivative of f(x,y) w.r.t x and y. 

dzdx = function(x,y){ 

  return(cos(x)) 

} 

 

dzdy = function(x,y){ 

  return(0) 

} 

The intensity on the surface at any point 𝑥𝑖 , 𝑦𝑖  is given by 𝑔(𝑥, 𝑦) = 𝜆√1 + (
𝜕𝑓

𝜕𝑥
)
2

+ (
𝜕𝑓

𝜕𝑦
)
2

 

m1 = function(x,y){ 

  return(sqrt(1+dzdx(x,y)^2+dzdy(x,y)^2)) 

  } 

The rejection sampling algorithm requires the maximum of g(x,y) over the window W. For 

many functions this can be found using the stats::optim function. 

m1optim = function(XY){ 

  return(-sqrt(1+dzdx(XY[1],XY[2])^2+dzdy(XY[1],XY[2])^2)) 

} 
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maxM1 = -optim(par = c(1,1),lower=c(minX,minY),upper=c(maxX,maxY),fn = 

m1optim,method="L-BFGS-B")$value 

We then generate a homogeneous Poisson point pattern over the window W with intensity equal 

to 𝜆 ∗ max𝑀1 , and from that pattern we accept points with probability equal to 
𝑔(𝑥𝑖,𝑦𝑖)

𝑚𝑎𝑥𝑖∈𝑊𝑔(𝑥𝑖,𝑦𝑖)
. 

area = (maxX-minX)*(maxY-minY) 

x=runif(lambda*maxM1*area,minX,maxX) 

y=runif(lambda*maxM1*area,minY,maxY) 

w=runif(lambda*maxM1*area,0,1) 

x=x[w<(m1(x,y)/maxM1)] 

y=y[w<(m1(x,y)/maxM1)] 
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Examples 

Sine Function 

 
# Generate a Poisson point process on a surface described by a sine function 

 

generateSinPoints <- function(lambda,xrange,yrange,plot=FALSE){ 

   

SINFun = function(x,y){ 

  return(sin(x)) 

} 

 

minX <- xrange[1] 

maxX <- xrange[2] 

minY <- yrange[1] 

maxY <- yrange[2] 

 

x_ <- seq(minX,maxX,by=0.5) 

y_ <- seq(minY,maxY,by=0.5) 

z_ <- outer(x_, y_, SINFun) 

 

dzdx = function(x,y){ 

  return(cos(x)) 

} 

 

dzdy = function(x,y){ 

  return(0) 

} 

 

m1 = function(x,y){ 

  return(sqrt(1+dzdx(x,y)^2+dzdy(x,y)^2)) 

  } 

 

m1optim = function(XY){ 

  return(-sqrt(1+dzdx(XY[1],XY[2])^2+dzdy(XY[1],XY[2])^2)) 

  } 

 

maxM1 = -optim(par = c(1,1),lower=c(minX,minY),upper=c(maxX,maxY) 

               ,fn = m1optim,method="L-BFGS-B")$value 

 

area = (maxX-minX)*(maxY-minY) 

x=runif(lambda*maxM1*area,minX,maxX) 

y=runif(lambda*maxM1*area,minY,maxY) 

w=runif(lambda*maxM1*area,0,1) 

keep = w<(m1(x,y)/maxM1) 

x=x[keep] 

y=y[keep] 

 

if(plot == TRUE){ 

rot<-persp(x_, y_, z_,main="Sine Function",xlab="x",ylab="y",zlab="z") 

points(trans3d(x = x,y=y,z = SINFun(x,y),pmat=rot),col="blue",pch=3) 

} 

return(ppp(x,y,window=owin(xrange=xrange,yrange=yrange))) 

   

} 

  



 

118 
 

 
# Fig. S1a - CSR points on a synthetic sinusoidal surface 

generateSinPoints(10,c(0,8),c(0,2),plot=TRUE) 

 

Fig. S1a CSR points on a synthetic sinusoidal surface.  

 

# Fig. S1b – KDE of projection of CSR points on a synthetic sinusoidal surface 

plot(density(generateSinPoints(200,c(0,8),c(0,2))),main="") 

 

Fig. S1b Kernel Density Estimate of planar projection of points simulated on a synthetic 

sinusoidal surface.  
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Note: An alternative method to generate topographically correct point patterns is to use the 

spatstat package to generate an inhomogeneous point pattern by creating a spatstat im object 

containing a rasterized version of the correction factor. While this method is approximate, it is 

more efficient and simpler to implement, and the approximation is likely to be sufficient for most 

cases. 

The function spatstat::as.im converts an input, x, into an object of class im, representing a 

2D pixel image which is compatible with other functions in the spatstat package. When the 

input argument x is a function, this function is evaluated at all cells within the window W. As “the 

function X will be evaluated in the form X(x, y, …) where x and y are vectors containing the x 

and y coordinates of all the pixels in the image mask”, the function used to generate the image 

must be vectorized. The Vectorize function is used to generate a rasterized version of the 

function 𝑧 = 𝑓(𝑥, 𝑦). The function sp::surfaceArea can then be used on this pixel image to 

determine the ratio between the true and projected areas of each cell in the window. 

#Not Run 

step=as.im(SINFun,W=owin(xrange=c(0,8),yrange=c(0,2)),eps=0.01) 

stepSA = 

as.im(surfaceArea(as.matrix(step),cellx=step$xstep,celly=step$ystep,byCell=TRUE),W

=owin(xrange=c(0,8),yrange=c(0,2))) 

stepCF = stepSA/(step$xstep*step$ystep) 

stepCF = as.im(stepCF,W=as.owin(step)) 
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Step Function 

# Generate a Poisson point process on a surface described by a step function 

 

generateStepPoints <- function(lambda,xrange,yrange,plot=FALSE){ 

   

STEPFun = function(x,y){ 

  if(x < 2){return(4)} 

  else if(x>=2 & x<4){return(4 + (x-2)*1)} 

  else if(x>=4 & x<6){return(6)} 

  else if(x>=6){return(6 + (x-6)*2)} 

} 

 

STEPFun <- Vectorize(STEPFun) 

 

minX <- xrange[1] 

maxX <- xrange[2] 

minY <- yrange[1] 

maxY <- yrange[2] 

 

x_ <- seq(minX,maxX,by=0.5) 

y_ <- seq(minY,maxY,by=0.5) 

z_ <- outer(x_, y_, STEPFun) 

 

dzdx = function(x,y){ 

  if(x < 2){return(0)} 

  else if(x>=2 & x<4){return(1)} 

  else if(x>=4 & x<6){return(0)} 

  else if(x>=6){return(2)} 

} 

 

dzdx = Vectorize(dzdx) 

 

dzdy = function(x,y){ 

  return(0) 

} 

 

m1 = function(x,y){ 

  return(sqrt(1+dzdx(x,y)^2+dzdy(x,y)^2)) 

  } 

 

maxM1 = 2.236068 

area = (maxX-minX)*(maxY-minY) 

x=runif(lambda*maxM1*area,minX,maxX) 

y=runif(lambda*maxM1*area,minY,maxY) 

w=runif(lambda*maxM1*area,0,1) 

keep=w<(m1(x,y)/maxM1) 

x=x[keep] 

y=y[keep] 

 

if(plot == TRUE){ 

rot<-persp(x_, y_, z_,main="Step Function",xlab="x",ylab="y",zlab="z") 

points(trans3d(x = x,y=y,z = STEPFun(x,y),pmat=rot),col="blue",pch=3) 

} 

 

return(ppp(x,y,window=owin(xrange=xrange,yrange=yrange))) 

   

} 

 



 

121 
 

 
# Fig S2a - CSR points on a synthetic stepped surface 

generateStepPoints(10,c(0,8),c(0,2),plot=TRUE) 

 

Fig. S2a CSR points on a synthetic stepped surface.  

 

 
# Fig S2b - KDE of projection of CSR points on a synthetic stepped surface 

plot(density(generateStepPoints(200,c(0,8),c(0,2))),main="") 

 

Fig. S2b Kernel Density Estimate of planar projection of points simulated on a synthetic stepped 

surface.  
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Exponential Function 

# Generate a Poisson point process on a surface described by an exponential 

# function 

 

generateExpPoints <- function(lambda,xrange,yrange,plot=FALSE){ 

   

EXPFun = function(x,y){ 

  return(exp(x/4)) 

} 

 

minX <- xrange[1] 

maxX <- xrange[2] 

minY <- yrange[1] 

maxY <- yrange[2] 

 

x_ <- seq(minX,maxX,by=0.5) 

y_ <- seq(minY,maxY,by=0.5) 

z_ <- outer(x_, y_, EXPFun) 

 

dzdx = function(x,y){ 

  return(exp(x/4)/4) 

} 

 

dzdy = function(x,y){ 

  return(0) 

} 

 

m1 = function(x,y){ 

  return(sqrt(1+dzdx(x,y)^2+dzdy(x,y)^2)) 

  } 

 

m1optim = function(XY){ 

  return(-sqrt(1+dzdx(XY[1],XY[2])^2+dzdy(XY[1],XY[2])^2)) 

  } 

 

maxM1 = -optim(par = c(1,1),lower=c(minX,minY),upper=c(maxX,maxY),fn = 

m1optim,method="L-BFGS-B")$value 

 

 

area = (maxX-minX)*(maxY-minY) 

x=runif(lambda*maxM1*area,minX,maxX) 

y=runif(lambda*maxM1*area,minY,maxY) 

w=runif(lambda*maxM1*area,0,1) 

keep=w<(m1(x,y)/maxM1) 

x=x[keep] 

y=y[keep] 

 

if(plot == TRUE){ 

rot<-persp(x_, y_, z_,main="Exponential Function",xlab="x",ylab="y",zlab="z") 

points(trans3d(x = x,y=y,z = EXPFun(x,y),pmat=rot),col="blue",pch=3) 

} 

return(ppp(x,y,window=owin(xrange=xrange,yrange=yrange))) 

   

} 
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# Fig. S3a - CSR points on a synthetic exponential surface 

generateExpPoints(12,c(0,8),c(0,2),plot=TRUE) 

 

Fig. S3a CSR points on a synthetic exponential surface.  

 

 

# Fig. S3b - KDE of projection of CSR points on a synthetic exponential surface 

plot(density(generateExpPoints(200,c(0,8),c(0,2))),main="") 

 

Fig. S3b Kernel Density Estimate of planar projection of points simulated on a synthetic stepped 

surface.  
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Hypothesis Testing 

We use two Monte Carlo based approaches to hypothesis testing; The Diggle (1986) / Cressie 

(1991) / Loosmore and Ford (2006) (DCLF) test and the Maximum Absolute Deviation test. 

Additionally, we use one analytic test, Analytic Global Envelopes (AGE). For the 

implementation of the AGE, see the supplemental file “AGEpcf.r”. Due to the stochastic nature 

of these tests, results may vary between runs. Additionally, the number of iterations (set by the 

variables total and nSim) have been reduced in this document due to long run times. 

source("AGEpcf.r") 

 

dclf_fail_plane<-0 

mad_fail_plane<-0 

dclf_fail_plane_pcf<-0 

mad_fail_plane_pcf<-0 

age_fail_plane<-0 

total <- 500 

nSim <- 99 

for(i in 1:total){ 

  ppp_ <- rpoispp(lambda = 12, win = as.owin(c(0,8,0,2))) 

  if(dclf.test(ppp_, Kest, 

nsim=nSim,verbose=FALSE)$p<=0.05){dclf_fail_plane=dclf_fail_plane+1} 

  if(mad.test(ppp_, Kest, 

nsim=nSim,verbose=FALSE)$p<=0.05){mad_fail_plane=mad_fail_plane+1} 

  if(dclf.test(ppp_, pcf, 

nsim=nSim,verbose=FALSE)$p<=0.05){dclf_fail_plane_pcf=dclf_fail_plane_pcf+1} 

  if(mad.test(ppp_, pcf, 

nsim=nSim,verbose=FALSE)$p<=0.05){mad_fail_plane_pcf=mad_fail_plane_pcf+1} 

  if(AGEpcfPp(ppp_,0.05)$p<=0.05){age_fail_exp = age_fail_plane+1} 

} 

 

 

 

dclf_fail_step<-0 

mad_fail_step<-0 

dclf_fail_step_pcf<-0 

mad_fail_step_pcf<-0 

age_fail_step<-0 

total <- 500 

nSim <- 99 

 

for(i in 1:total){ 

  ppp_ <- generateStepPoints(10,c(0,8),c(0,2)) 

  if(dclf.test(ppp_, Kest, 

nsim=nSim,verbose=FALSE)$p<=0.05){dclf_fail_step=dclf_fail_step+1} 

  if(mad.test(ppp_, Kest, 

nsim=nSim,verbose=FALSE)$p<=0.05){mad_fail_step=mad_fail_step+1} 

  if(dclf.test(ppp_, pcf, 

nsim=nSim,verbose=FALSE)$p<=0.05){dclf_fail_step_pcf=dclf_fail_step_pcf+1} 

  if(mad.test(ppp_, pcf, 

nsim=nSim,verbose=FALSE)$p<=0.05){mad_fail_step_pcf=mad_fail_step_pcf+1} 

  if(AGEpcfPp(ppp_,0.05)$p<=0.05){age_fail_step = age_fail_step+1} 

} 

 

 

dclf_fail_sin<-0 

mad_fail_sin<-0 
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dclf_fail_sin_pcf<-0 

mad_fail_sin_pcf<-0 

age_fail_sin<-0 

total <- 500 

nSim <- 99 

 

for(i in 1:total){ 

  ppp_ <- generateSinPoints(10,c(0,8),c(0,2)) 

  if(dclf.test(ppp_, Kest, 

nsim=nSim,verbose=FALSE)$p<=0.05){dclf_fail_sin=dclf_fail_sin+1} 

  if(mad.test(ppp_, Kest, 

nsim=nSim,verbose=FALSE)$p<=0.05){mad_fail_sin=mad_fail_sin+1} 

  if(dclf.test(ppp_, pcf, 

nsim=nSim,verbose=FALSE)$p<=0.05){dclf_fail_sin_pcf=dclf_fail_sin_pcf+1} 

  if(mad.test(ppp_, pcf, 

nsim=nSim,verbose=FALSE)$p<=0.05){mad_fail_sin_pcf=mad_fail_sin_pcf+1} 

  if(AGEpcfPp(ppp_,0.05)$p<=0.05){age_fail_sin = age_fail_sin+1} 

} 

 

 

dclf_fail_exp<-0 

mad_fail_exp<-0 

dclf_fail_exp_pcf<-0 

mad_fail_exp_pcf<-0 

age_fail_exp<-0 

total <- 500 

nSim <- 99 

 

for(i in 1:total){ 

  ppp_ <- generateExpPoints(12,c(0,8),c(0,2)) 

  if(dclf.test(ppp_, Kest, 

nsim=nSim,verbose=FALSE)$p<=0.05){dclf_fail_exp=dclf_fail_exp+1} 

  if(mad.test(ppp_, Kest, 

nsim=nSim,verbose=FALSE)$p<=0.05){mad_fail_exp=mad_fail_exp+1} 

  if(dclf.test(ppp_, pcf, 

nsim=nSim,verbose=FALSE)$p<=0.05){dclf_fail_exp_pcf=dclf_fail_exp_pcf+1} 

  if(mad.test(ppp_, pcf, 

nsim=nSim,verbose=FALSE)$p<=0.05){mad_fail_exp_pcf=mad_fail_exp_pcf+1} 

  if(AGEpcfPp(ppp_,0.05)$p<=0.05){age_fail_exp = age_fail_exp+1} 

} 
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Results 

For each surface we record the number of times that we would reject the null hypothesis of 

complete spatial randomness. Using an alpha level of 0.05 we would expect the null to be 

rejected at a rate of 5% due to chance. 

 

Point Pattern M.A.D. (K(r)) dclf (K(r)) M.A.D. (g(r)) dclf (g(r)) AGE (g(r)) 

CSR on Plane 3.2% 5.4 % 3.8% 4.4% 0% 

CSR Step Function 81% 77.4 % 8.2% 11.4% 13% 

CSR Sine Function 7.8% 8% 6.4% 6% 7.2% 

CSR Exponential Function 35.6% 35.8% 5.6% 5.6% 14% 

 

Table S1. Realized rates of rejection of the null for hypothesis tests of CSR, when CSR is 

assumed to operate in the x-y plane, but the generating process operates on a 2D manifold in 3D 

space. 
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Simulation Envelopes - Ripleys K 

# Generate simulation envelopes for CSR on plane and on parametric surface 

iters = 100 

tmp=Kest(rpoispp(12,win=owin(c(0,8),c(0,2))),rmax=1) 

RANupper = rep(0,length(tmp$r)) 

RANlower = rep(10,length(tmp$r)) 

for(i in 1:iters){ 

  points_= rpoispp(12,win=owin(c(0,8),c(0,2))) 

  tmp=Kest(points_,rmax=1) 

  RANupper=pmax(RANupper,tmp$iso) 

  RANlower=pmin(RANlower,tmp$iso) 

} 

poisEnvelope = list(upper=RANupper,lower=RANlower,r=tmp$r) 

 

generateEnvelopes = function(iters,genFunc,lambda){ 

  tmp = Kest(genFunc(lambda,c(0,8),c(0,2)),rmax=1) 

  upper = rep(0,length(tmp$r)) 

  lower = rep(10,length(tmp$r)) 

  for(i in 1:iters){ 

    points_=genFunc(lambda,c(0,8),c(0,2)) 

    tmp=Kest(points_,rmax=1) 

    upper=pmax(upper,tmp$iso) 

    lower=pmin(lower,tmp$iso) 

  } 

  return(list(upper=upper,lower=lower,r=tmp$r)) 

} 

 

plotEnvelopes <- function(testEnvelope,poissonEnvelope,title){ 

  

plot(testEnvelope$r,testEnvelope$upper,type="l",col="red",ylab="K(r)",xlab="r",mai

n=title) 

  lines(testEnvelope$r,testEnvelope$lower,col="red") 

  lines(testEnvelope$r,poissonEnvelope$lower,col="blue") 

  lines(testEnvelope$r,poissonEnvelope$upper,col="blue") 

} 

 

stepEnvelopes <- generateEnvelopes(iters = 100,genFunc = generateStepPoints,lambda 

= 10) 

sinEnvelopes <- generateEnvelopes(iters = 100,genFunc = generateSinPoints,lambda = 

10) 

expEnvelopes <- generateEnvelopes(iters = 100,genFunc = generateExpPoints,lambda = 

12) 
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# Fig. S4a – Simulation envelopes of Ripleys K for sine surface 

plotEnvelopes(sinEnvelopes,poisEnvelope,"Ripleys K, Sine Function") 

 

Fig S4a Ripleys K calculated for the x-y plane projection of CSR points generated on synthetic 

sinusoidal surface.  
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# Fig. S4b – Simulation envelopes of Ripleys K for step surface 

plotEnvelopes(stepEnvelopes,poisEnvelope,"Ripleys K, Step Function") 

 

Fig. S4b Ripleys K calculated for the x-y plane projection of CSR points generated on synthetic 

stepped surface.  
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# Fig. S4c – Simulation envelopes of Ripleys K for exponential surface 

plotEnvelopes(expEnvelopes,poisEnvelope,"Ripleys K, Exponential Function") 

 

Fig. S4c Ripleys K calculated for the x-y plane projection of CSR points generated on synthetic 

exponential surface.  
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Topographically Corrected Model Fitting 

Bei dataset 

“The dataset bei gives the positions of 3605 trees of the species Beilschmiedia pendula 

(Lauraceae) in a 1000 by 500 metre rectangular sampling region in the tropical rainforest of 

Barro Colorado Island. The accompanying dataset bei.extra gives information about the altitude 

(elevation) in the study region. It is a list containing two pixel images, elev (elevation in metres) 

and grad (norm of elevation gradient). These data are part of a much larger dataset containing the 

positions of hundreds of thousands of trees belong to thousands of species; see Hubbell and 

Foster (1983), Condit, Hubbell and Foster (1996) and Condit (1998).” –Reproduced from 

spatstat package documentation, version 1.45-0 
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# Fig. S5 – Bei dataset overlaid on included terrain model 

 

M <- persp(bei.extra$elev, 

            colmap=terrain.colors(128), 

            apron=TRUE, theta=-30, 

            phi=20,zlab="Elevation", 

            main="Bei Dataset", 

            expand=6, 

            visible=TRUE, 

            shade=0.3, 

            xlab="1000m", 

            ylab="500m") 

 

perspPoints(bei, 

            Z=bei.extra$elev, 

            M=M, 

            pch=16, 

            cex=0.3) 

 

image.plot(legend.only=T, 

           zlim=range(bei.extra$elev), 

           col=terrain.colors(128), 

           horizontal=TRUE) 

 

Fig. S5 Bei dataset from spatstat package. Points indicate the position of Beilschmiedia pendula 

in a 1000 by 500 meter region on Barro Colorado Island.  
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Bei model without topographic correction 

# Fit model of bei intensity against slope with no topographic correction 

 

beiNoCorrection <- ppm(bei ~  slope,covariates = list(slope = bei.extra$grad)) 

 

summary(beiNoCorrection) 

## Point process model 

## Fitting method: maximum likelihood (Berman-Turner approximation) 

## Model was fitted using glm() 

## Algorithm converged 

## Call: 

## ppm.formula(Q = bei ~ slope, covariates = list(slope = bei.extra$grad)) 

## Edge correction: "border" 

##  [border correction distance r = 0 ] 

## --------------------------------------------------------------------------- 

## Quadrature scheme = data + dummy + weights 

## Data pattern: 

## Planar point pattern:  3604 points 

## Average intensity 0.00721 points per square metre 

## Window: rectangle = [0, 1000] x [0, 500] metres 

## Window area = 5e+05 square metres 

## Unit of length: 1 metre 

##  

## Dummy quadrature points: 

## (130 x 130 grid, plus 4 corner points) 

## Planar point pattern:  16904 points 

## Average intensity 0.0338 points per square metre 

## Window: rectangle = [0, 1000] x [0, 500] metres 

## Window area = 5e+05 square metres 

## Unit of length: 1 metre 

##  

## Quadrature weights: 

## (counting weights based on 130 x 130 array of rectangular tiles) 

## All weights: 

##  range: [1.64, 29.6] total: 5e+05 

## Weights on data points: 

##  range: [1.64, 14.8] total: 41000 

## Weights on dummy points: 

##  range: [1.64, 29.6] total: 459000 

## --------------------------------------------------------------------------- 

## FITTED MODEL: 

##  

## Nonstationary Poisson process 

##  

## ---- Intensity: ---- 

##  

## Log intensity: ~slope 

## Model depends on external covariate 'slope' 

## Covariates provided: 

##  slope: im 

##  

## Fitted trend coefficients: 

## (Intercept)       slope  

##   -5.390553    5.022021  

##  

##              Estimate       S.E.   CI95.lo   CI95.hi Ztest       Zval 

## (Intercept) -5.390553 0.03001716 -5.449385 -5.331720   *** -179.58236 

## slope        5.022021 0.24540264  4.541041  5.503002   ***   20.46441 
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##  

## ----------- gory details ----- 

##  

## Fitted regular parameters (theta): 

## (Intercept)       slope  

##   -5.390553    5.022021  

##  

## Fitted exp(theta): 

##  (Intercept)        slope  

## 4.559453e-03 1.517176e+02 
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#Fig S6a - 2D plot of fitted intensity 

plot(predict(beiNoCorrection),main = '') 

 

Fig. S6a Expected number of points (locations of Beilschmiedia pendula) predicted by model 

fitted without correction for projection to the x-y plane  
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#Fig S6b - 3D plot of fitted intensity 

 M <- persp(bei.extra$elev, 

            colmap=heat.colors(128), 

            colin = predict(beiNoCorrection), 

            apron=TRUE, 

            theta=-30, 

            phi=20, 

            zlab="Elevation", 

            expand=6, 

            visible=TRUE, 

            shade=0.3, 

            xlab="1000m", 

            ylab="500m", 

            main = '') 

 

 image.plot(legend.only=T, 

            zlim=range(predict(beiNoCorrection)), 

            col=heat.colors(128), 

            horizontal=TRUE) 

 

Fig. S6b Expected number of points (locations of Beilschmiedia pendula) predicted by model 

fitted without correction for projection to the x-y plane  
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Bei model with correction 

The topographically corrected surface area for each cell in a raster DEM can be calculated using 

the surfaceArea function from the sp package. This method implements the 8 point algorithm 

from Jenness (2004). The resulting raster can be converted back to a spatstat compatible 

dataset using the as.im function from the spatstat package. This raster must then be divided 

by the area of each cell in the raster to produce the correction factor between S and W. 

SurfaceArea=as.im(surfaceArea(as.matrix(bei.extra$elev), 

                              cellx=5, 

                              celly=5, 

                              byCell=TRUE), 

                  W=as.owin(bei.extra$elev)) 

  

TopoCorrection = SurfaceArea/(bei.extra$elev$xstep*bei.extra$elev$ystep) 

Models of inhomogeneous point processes can be topographically corrected by including 

log (𝑆𝑖 𝑊𝑖⁄ ) as an offset term when fitting models using the spatstat function ‘ppm’. 

# Fit model of bei intensity against slope with topographic correction 

 

beiWithCorrection <- ppm(bei ~ offset(log(TopoCorrection)) + slope, 

                         covariates = list(TopoCorrection = TopoCorrection, slope 

= bei.extra$grad)) 

 

summary(beiWithCorrection) 

## Point process model 

## Fitting method: maximum likelihood (Berman-Turner approximation) 

## Model was fitted using glm() 

## Algorithm converged 

## Call: 

## ppm.formula(Q = bei ~ offset(log(TopoCorrection)) + slope, covariates = 

list(TopoCorrection = TopoCorrection,  

##     slope = bei.extra$grad)) 

## Edge correction: "border" 

##  [border correction distance r = 0 ] 

## --------------------------------------------------------------------------- 

## Quadrature scheme = data + dummy + weights 

## Data pattern: 

## Planar point pattern:  3604 points 

## Average intensity 0.00721 points per square metre 

## Window: rectangle = [0, 1000] x [0, 500] metres 

## Window area = 5e+05 square metres 

## Unit of length: 1 metre 

##  

## Dummy quadrature points: 

## (130 x 130 grid, plus 4 corner points) 

## Planar point pattern:  16904 points 

## Average intensity 0.0338 points per square metre 

## Window: rectangle = [0, 1000] x [0, 500] metres 

## Window area = 5e+05 square metres 

## Unit of length: 1 metre 

##  

## Quadrature weights: 
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## (counting weights based on 130 x 130 array of rectangular tiles) 

## All weights: 

##  range: [1.64, 29.6] total: 5e+05 

## Weights on data points: 

##  range: [1.64, 14.8] total: 41000 

## Weights on dummy points: 

##  range: [1.64, 29.6] total: 459000 

## --------------------------------------------------------------------------- 

## FITTED MODEL: 

##  

## Nonstationary Poisson process 

##  

## ---- Intensity: ---- 

##  

## Log intensity: ~offset(log(TopoCorrection)) + slope 

## Model depends on external covariates 'TopoCorrection' and 'slope' 

## Covariates provided: 

##  TopoCorrection: im 

##  slope: im 

##  

## Fitted trend coefficients: 

## (Intercept)       slope  

##   -5.384777    4.860740  

##  

##              Estimate       S.E.   CI95.lo   CI95.hi Ztest       Zval 

## (Intercept) -5.384777 0.02999295 -5.443562 -5.325992   *** -179.53476 

## slope        4.860740 0.24511659  4.380321  5.341160   ***   19.83032 

##  

## ----------- gory details ----- 

##  

## Fitted regular parameters (theta): 

## (Intercept)       slope  

##   -5.384777    4.860740  

##  

## Fitted exp(theta): 

##  (Intercept)        slope  

## 4.585863e-03 1.291198e+02 
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# Fig S7a - 2D plot of fitted intensity 

plot(predict(beiWithCorrection),main = '') 

 

Fig. S7a Expected number of points (locations of Beilschmiedia pendula) predicted by model 

fitted with correction for projection to the x-y plane  
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# Fig S7b - 3D plot of fitted intensity 

M <- persp(bei.extra$elev, 

           colmap=heat.colors(128), 

           colin = predict(beiWithCorrection), 

           apron=TRUE, 

           theta=-30, 

           phi=20, 

           zlab="Elevation", 

           expand=6, 

           visible=TRUE, 

           shade=0.3, 

           xlab="1000m", 

           ylab="500m", 

           main = '') 

 

image.plot(legend.only=T, 

           zlim=range(predict(beiWithCorrection)), 

           col=heat.colors(128), 

           horizontal=TRUE) 

 

Fig. S7b Expected number of points (locations of Beilschmiedia pendula) predicted by model 

fitted with correction for projection to the x-y plane  
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# Fig S7c – Change in estimated intensity with and without topographic correction 

plot((predict(beiWithCorrection)-

predict(beiNoCorrection))/predict(beiNoCorrection), main = '') 

 

Fig. S7c Proportional change in expected intensity between model with correction for projection 

and model without.  
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# Fig S7d – Change in estimated intensity with and without topographic correction 

 

M <- persp(bei.extra$elev, 

           colmap=heat.colors(128), 

           colin = (predict(beiWithCorrection)-

predict(beiNoCorrection))/predict(beiNoCorrection), 

           apron=TRUE, 

           theta=-30, 

           phi=20, 

           zlab="Elevation", 

           expand=6, 

           visible=TRUE, 

           shade=0.3, 

           xlab="1000m", 

           ylab="500m", 

           main = '') 

 

image.plot(legend.only=T, 

           zlim=range((predict(beiWithCorrection)-

predict(beiNoCorrection))/predict(beiNoCorrection)), 

           col=heat.colors(128), 

           horizontal=TRUE) 

 

Fig. S7c 3D representation of proportional change in expected intensity between model with 

correction for projection and model without.  
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Distribution of correction factors required in real datasets 

 
#Synthetic surfaces 

STEPFun = function(x,y){ 

  if(x < 2){return(4)} 

  else if(x>=2 & x<4){return(4 + (x-2)*1)} 

  else if(x>=4 & x<6){return(6)} 

  else if(x>=6){return(6 + (x-6)*2)} 

} 

 

STEPFun <- Vectorize(STEPFun) 

 

SINFun = function(x,y){ 

  return(sin(x)*2) 

} 

 

EXPFun = function(x,y){ 

  return(exp(x/4)) 

} 

 

step=as.im(STEPFun,W=owin(xrange=c(0,8),yrange=c(0,2)),eps=0.01) 

stepSA = as.im(surfaceArea(as.matrix(step), 

                           cellx=step$xstep, 

                           celly=step$ystep, 

                           byCell=TRUE), 

               W=owin(xrange=c(0,8),yrange=c(0,2))) 

 

stepCF = stepSA/(step$xstep*step$ystep) 

stepCF = as.im(stepCF,W=as.owin(step)) 

 

SIN=as.im(SINFun,W=owin(xrange=c(0,8),yrange=c(0,2)),eps=0.01) 

SINSA = as.im(surfaceArea(as.matrix(SIN), 

                          cellx=SIN$xstep, 

                          celly=SIN$ystep, 

                          byCell=TRUE), 

              W=owin(xrange=c(0,8),yrange=c(0,2))) 

 

SINCF = SINSA/(SIN$xstep*SIN$ystep) 

SINCF = as.im(SINCF,W=as.owin(SIN)) 

 

EXP=as.im(EXPFun,W=owin(xrange=c(0,8),yrange=c(0,2)),eps=0.01) 

EXPSA = as.im(surfaceArea(as.matrix(EXP), 

                          cellx=EXP$xstep, 

                          celly=EXP$ystep, 

                          byCell=TRUE), 

              W=owin(xrange=c(0,8),yrange=c(0,2))) 

 

EXPCF = EXPSA/(EXP$xstep*EXP$ystep) 

EXPCF = as.im(EXPCF,W=as.owin(EXP)) 

 

histDFEXP = as.data.frame(EXPCF) 

histDFEXP$dataset="EXP" 

histDFSIN = as.data.frame(SINCF) 

histDFSIN$dataset="SINE" 

histDFSTEP = as.data.frame(stepCF) 
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histDFSTEP$dataset="STEP" 

 

# Real datasets 

histDFGOR = as.data.frame(1/cos((pi*gorillas.extra$slopeangle)/180)) 

histDFGOR$dataset="Gorilla" 

histDFBEI = as.data.frame(1/cos(atan(bei.extra$grad))) 

histDFBEI$dataset="Bei" 

histDFFIRE = as.data.frame(1/cos((pi*clmfires.extra$clmcov100$slope)/180)) 

histDFFIRE$dataset="CLM Fires" 

hhistDF = rbind(histDFEXP,histDFSIN,histDFSTEP,histDFGOR,histDFBEI,histDFFIRE) 

hhistDF$dataset = factor(hhistDF$dataset, 

                         levels = c("EXP","SINE","STEP","Bei","CLM 

Fires","Gorilla")) 
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# Fig S8 – Distribution of correction factors for explored surfaces 

ggplot(data=hhistDF, aes(value,fill=dataset))+ 

  geom_histogram(bins=100)+ 

  facet_grid(dataset~.,scales="free_y")+ 

  theme(axis.title.y=element_blank(), 

        axis.text.y=element_blank(), 

        axis.ticks.y=element_blank())+ 

  guides(fill=guide_legend(title="Dataset")) 

 

 

 

Fig. S8 Comparison of the distributions of correction factors in synthetic surfaces used in 

previous examples and the correction factors required for several real datasets from the spatstat 

package.  
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Effects of Slope 

The following code generates a set of homogeneous Poisson point patterns over a surface in 

which half of the window is in the x-y plane, while the other half of the surface is a sloped plane 

set at a variable angle (theta) from the x-y plane. For each pattern we test whether we would 

reject a null of CSR at a level of 0.05, using the Maximum Absolute Deviance test. 

#convert degrees to radians for use in trigonometric functions 

toRadians = function(theta){ 

  return((theta*pi)/180) 

} 

 

#Return a vectorized function with arguments x,y which can be passed to rpoispp 

lam_by_slope = function(theta){ 

  lam = function(x,y){ 

    #return ppp generator 

    if(x<=4){ 

      return(10) 

    } 

    else{ 

      return(10*(1/cos(toRadians(theta)))) 

    } 

  } 

  return(Vectorize(lam)) 

} 

 

iters=500 

theta = 1:60 

result = vector(length=60) 

for(i in theta){ 

  for(j in 1:iters){ 

  result[i] = result[i] + (mad.test(X = 

rpoispp(lam_by_slope(i),win=owin(c(0,8),c(0,8))),nsim=99,verbose=F)$p<=0.05) 

  } 

} 
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# Fig S9 – Effect of partial inclined plane on rates of reject CSR null 

plot(x=theta,y=result/iters,xlab="Angle of Inclined Plane",ylab="Failure 

Rate",type='b',main = '') 

abline(h=0.05,col="green",lty=2) 

 

Fig. S9 Rate at which null of CSR (in x-y plane) would be rejected under the Maximum 

Absolute Deviance test if generating point process acts on a surface comprising a planar area and 

an inclined plane.  
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Algorithms for generating point processes on surfaces in stored as 3D Meshes 

An alternate way of storing topographic information is in the form of a polygonal mesh, where a 

surface is represented by a set of point locations and relationships between these points together 

form the faces of the surface. One of the advantages of storing topographic data in this form is 

that the density of vertices within the mesh is variable and as such information storage is more 

efficient, and the mesh can more closely approximate the continuous surface it is intended to 

describe. 

Poisson point processes may be simulated directly on the faces of the mesh using a barycentric 

coordinate system, providing correctly distributed points with x, y and z components. 

1. For each face in the mesh, calculate the area 𝐴𝐹 of the polygon 

2. Generate a random variable N such that 𝑁 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝐴𝐹) 

3. Define vectors (𝑎𝑏⃗⃗⃗⃗ ) and (𝑎𝑐⃗⃗⃗⃗ ) from one vertex of the triangle (a) to vertices b and c 

4. Generate N pairs of random variables u and v such that 𝑢, 𝑣 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

5. If 𝑢 + 𝑣 > 1, then 𝑢 = 1 − 𝑢, 𝑣 = 1 − 𝑣 

6. Calculate point positions as 𝑎 + (𝑎𝑏⃗⃗⃗⃗ )𝑢 + (𝑎𝑐⃗⃗⃗⃗ )𝑣 

These points can be converted to a format suitable for existing point pattern analysis packages by 

producing an orthographic projection to the x-y plane. Alternatively we can calculate the areas of 

each polygon in their original x,y,z form, then project these polygons to the x-y plane and form a 

correction factor between projected and real areas. 

Wavefront .OBJ file format (.OBJ) 

The .OBJ file format stores the structure of the mesh as a plain-text series of vertex positions and 

edges which group vertices into faces. The .OBJ format is commonly used in 3D modelling 

software and may be exported from a range of photogrammetry packages. With the increased 

availability and use of unmanned aerial vehicles equipped with cameras we foresee 

photogrammetrically derived topography datasets becoming more prevalent in ecology. The 

following python code will read a .OBJ format mesh and generate a Poisson point pattern across 

the faces of the mesh. 

NOTE: While the .OBJ format allows the faces of meshes to be any arbitrary n-sided polygon, 

this code requires a mesh with triangular faces. Meshes can be triangulated using freely available 

3D modelling software such as Blender. 

 

 

 

 

 

https://www.blender.org/
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import numpy as np 
 
class Mesh(): 
    def __init__(self,filename): 
        numFaces = 0 
        verts = [] 
        polygons = [] 
        area = [] 
        for line in open(filename, "r"): 
            vals = line.split() 
            if vals: 
                if vals[0] == "v": 
                    v = map(float, vals[1:4]) 
                    verts.append(np.array(v)) 
                if vals[0] == "f": 
                    vertices = map(Mesh.line_split, vals[1:4]) 
                    print [verts[i] for i in vertices] 
                    polygon = {'vertices': vertices, 
                              'area':Mesh.polygon_area([verts[i] for i in ver
tices])} 
                    polygons.append(polygon) 
                    numFaces += 1 
            self.polygons=polygons 
            self.verts = verts 
 
    @staticmethod 
    def line_split(line): 
        return int(line.split("/")[0])-1 
 
    @staticmethod 
    def unit_normal(a, b, c): 
        x = np.linalg.det([[1,a[1],a[2]],[1,b[1],b[2]],[1,c[1],c[2]]]) 
        y = np.linalg.det([[a[0],1,a[2]],[b[0],1,b[2]],[c[0],1,c[2]]]) 
        z = np.linalg.det([[a[0],a[1],1],[b[0],b[1],1],[c[0],c[1],1]]) 
        mag = (x**2 + y**2 + z**2)**0.5 
        return (x/mag, y/mag, z/mag) 
 
    @staticmethod 
    def polygon_area(polygon): 
        if len(polygon) < 3: 
            return 0 
        total = [0, 0, 0] 
        for i in range(3): 
            a = polygon[i] 
            b = polygon[(i+1) % 3] 
            crossProd = np.cross(a, b) 
            total[0] += crossProd[0] 
            total[1] += crossProd[1] 
            total[2] += crossProd[2] 
            area = abs(np.dot(total, Mesh.unit_normal(polygon[0], polygon[1], 
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polygon[2]))/2) 
        return area 
 
    def pointProcess(self, lam): 
        points = [] 
        for face in self.polygons: 
            area = face['area'] 
            nPoints = np.random.poisson(area * lam) 
            a, b, c = tuple([self.verts[x] for x in face['vertices']]) 
            ab = b - a 
            ac = c - a 
            for point in range(0, nPoints): 
                r1, r2 = np.random.uniform(0, 1, 2) 
                if r1 + r2 >= 1: 
                    r1 = 1 - r1 
                    r2 = 1 - r2 
                point = a + r1 * ab + r2 * ac 
                points.append(point) 
        return (points) 

ESRI .TIN 

The TIN format produced by ESRI applications such as ArcScene is similar to the .OBJ however 

the format is proprietary and ESRI tools must be used to work with data in this form. 

1. Run the TIN Triangle tool from the 3D Analyst toolbox to create a shapefile of the 

projections of the faces of the TIN. 

2. Open the attribute table for the newly create feature layer. Add a field called NRand to the 

attribute table and open the field calculator. Select Python as the parser. In the Pre-Logic 

Script Code block add import numpy as np. In the NRand = block add 

int(np.random.poisson(lambda,1))*!Shape_Area!, replacing lambda with an integer 

representing the desired intensity. 

3. Run the Create Random Points tool from the Data Management toolbox. Select the projection 

of the TIN as the Constraining Feature Class and set Number of Points to Field and select 

NRand. 

 

http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/tin-triangle.htm
http://pro.arcgis.com/en/pro-app/tool-reference/data-management/create-random-points.htm

