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Abstract of the Dissertation

Roadmap to fully-automated, pan-Antarctic, pack-ice seal surveys

by

Bento C. Gonçalves

Doctor of Philosophy

in

Department of Ecology & Evolution

Stony Brook University

2022

Antarctic pack-ice seals, through their ecological role as key Antarctic krill preda-
tors, are critical to the Southern Ocean ecosystem. Shifts in sea ice distribution caused
by anthropogenic climate change and krill fisheries threaten their populations. While
initially surveyed by vessel or aircraft transects, very high-resolution remote sensing
imagery has emerged as a safer and potentially cheaper alternative. The sheer volume
of imagery, however, limits the spatial and temporal scale for human annotation of
satellite imagery. AI-based, fully-automated surveys offer true scalability and, while
imperfect, provide consistent annotations unaffected by observer fatigue or other fac-
tors external to the image itself. However, a pan-Antarctic survey using remote sens-
ing comes with a number of challenges: 1) detecting seals in very-high-resolution im-
agery is a daunting task even for trained experts and relies heavily on contextual clues,
making proper statistical treatment pivotal to go from detections to population esti-
mates; 2) variability in lighting, terrain, off-nadir angle, and sea ice conditions impose
severe limitations on the reliability of validation and test sets; and 3) limitations in
our understanding of seal haul out behavior hamper our efforts to estimate the por-
tion of seals available for detection (i.e. not submerged) at any moment in time. Here
I present the recent advances in AI-powered seal detection and outline a schematic
of the fully-automated pipeline that would be needed for regular pan-Antarctic seal
surveying, along with requirements in terms of cost of imagery, personnel, and com-
putational power. I will also discuss auxiliary components developed in support of an
automated seal census, including sea ice segmentation models that are able to restrict
input imagery to potential seal habitat only, human-level seal detection models, and
the HPC middleware required to apply this efficiently at scale.
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“Wisdom tells me I am nothing. Love tells me I am everything. And between the two my life

flows.”

–Nisargadatta Maharaj
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2.1 Individual pack-ice seals viewed in panchromatic WV-3 imagery. The

scale bar shows one meter, with a typical seal about 2.5 m long covering

20–30 pixels (in total). All three seals in this image were extracted from

the same scene, but the resolution may change depending on the angle

at which the image was captured by the WV-3 sensor. Satellite imagery
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2.2 Sampling scheme. WV-3 scenes are split into smaller ‘patches’ to fit

CNN requirements for input size. To create a training set, 450 × 450

training patches are extracted around features of interest (light-blue cir-

cles) on a scene, which may overlap depending on how close features

are and CNN input size (orange squares on the bottom right). For pre-

diction, whole scenes get chopped into 224 × 224 pixel patches using

a sliding-window approach, with a stride that keeps a 75% overlap on

both the x and y axes. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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2.3 Training set scenes. Locations of the 52 WorldView-3 scenes used on

the training set are marked with light-blue squares. Scenes with spa-

tial overlap were captured at different times. Training set scenes range

from October 2014 to February 2017. The scarcity of offshore scenes in

my training set reflects the preponderance of coastal scenes on avail-

able WV-3 imagery. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Antarctic basemap extracted from Quantarctica (Matsuoka et al., 2018). . 25

2.4 ealNet architecture. The CNN takes in a patch as input, generates an oc-

cupancy probability and a seal count with peripheral branches, and re-

constructs a heatmap for pixel-wise probability of being a seal centroid.

Predicted seal centroids are determined outside of the CNN by finding

the n largest intensity peaks on a patch, where n is the regressed seal

count for that patch multiplied by a Boolean (0 or 1) indicating whether

the occupancy probability for that patch surpasses a predefined thresh-

old. Model output is displayed in bold. Satellite imagery (upper left)
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2.5 (a–e) Satellite imagery representing the test set. Test set scenes are not

included in training or validation sets and serve as a way to get out-of-

sample precision and recall over a range of scenarios that we are likely

to encounter at deployment stages. Scenes a and b have seals over fast-

ice, with low and high densities, respectively. Scenes c and d have seals

over pack ice, with low and high densities, respectively. Scenes e cov-

ers the Antarctic coastline landscape without seals. All test scenes were

obtained between February and March 2017 at the locations specified

in the Antarctic continent thumbnail at the lower right of the panel.

Antarctic basemap extracted from Quantarctica [90]. Satellite imagery
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2.6 (a) Validation performance: Validation precision and recall reported

here are the highest obtained for 75 training epochs. Predicted seal cen-

troids are considered true positives if their location is within 5 pixels

of a manually annotated seal centroid. (b) Learning curve for SealNet:

Top validation f1-score obtained during training epochs is displayed

for SealNet instances trained on increasing large random subsets of my

training set. Training set subsets are generated using a weighted sam-

pler that ensures a similar class representation regardless of the number

of training samples on a subset. . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Sample SealNet output. Panels true-positives (light-blue circles) false

negatives (orange arrows) and false positives (orange open circles), by

a double-observer consensus (upper panel) and SealNet (lower panel).

Examples, from left to right, show a case where both SealNet and the

consensus set locate seals faultlessly, a case where SealNet outperforms

the consensus set, and a case where it underperforms the consensus

set. Crops were extracted at a 1:500 scale from the test scenes b, c, and

d, respectively (Fig. 2.5). (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this

article.) Satellite imagery copyright DigitalGlobe, Inc. (2019). . . . . . . . 29

2.8 (a) CNN performance on different group sizes. Recall values are ex-

tracted by measuring the proportion of ground-truth seal points on specific-

sized haul outs a model can recover. (b) Test group size distribution.

The y-axis shows the proportion of seals across all test scenes that are

located in groups of size x. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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3.1 Training set scenes. Dark squares denote the location of each of the 36

scenes in my training set. Scene squares are marked with a light dot

whenever I drew annotations by hand for that specific scene. Imagery

copyright DigitalGlobe, Inc. 2021. . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Synthetic image creation. Five examples of my synthetic image cre-

ation pipeline extracted from my training set images. My watershed

segmentation algorithm in step 2 is applied sequentially for a total of

three times. I fill masked-out areas in step 3 with open water images

sampled at random. I find three channel overlaps in step 4 using an

adaptive threshold. Refined masks in step 5 are obtained by subtracting

overlapping areas from step 4 from watershed masks in step 2. Imagery

copyright DigitalGlobe, Inc. 2021. . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 CNN architecture. My CNN architecture borrows from the U-Net ar-

chitecture, with encoder and decoder branches connected by copy-and-

concatenate operations, with the sole difference that the base U-Net en-

coder is replaced with a ResNet34 encoder. ResNet blocks within the en-

coder consist of a set of convolution operators intertwined by batch nor-

malization and rectified linear unit (ReLU) operations followed by con-

catenation with the input features (i.e. skip-connection). After running

through ResNet blocks, features get down-sampled after each ResNet

block with a strided average pooling layer, reducing the height and

width of each channel by a factor of 2. I do not provide numbers for

height and width for input images and CNN blocks in the schematic

because input size is a dynamic parameter in my study design. . . . . . 40
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3.4 Hyperparameter tuning experiments. Validation f1-scores of 623 ran-

dom search experiments across six different hyperparameters. I test

the influence of input size, training set choice, data augmentation rou-

tine, ratio of negative to positive images within mini-batches, choice

of loss function and learning rate on model performance, measured as

the f1-score in the validation set. My training sets consist of combina-

tions of a small set of hand-labeled images ("manual"), a larger set of

images annotated using a watershed segmentation algorithm ("water-

shed"), and a set of synthetic input images created by modifying im-

ages from the previous set to be more consistent with their watershed-

derived masks ("synthetic"). For loss functions, I tested binary cross-

entropy loss (BCE), Focal Loss, three variants of Dice Loss, and a weighted

mixture of Dice and Focal Losses. For each experiment, I split my runs

between models trained from scratch and models that fine-tuned from

a previous experiment, in which case initial parameter weights would

be drawn from one of the top 100 models trained from scratch, selected

at random. All my fine-tuning experiments were trained with manual

labels, as the annotation masks within are closer to the output than I

would wish during inference. The learning rate scatter plot shows each

experiment as a dot and trend lines for models trained from scratch

(continuous line) and fine-tuned models (dashed line). . . . . . . . . . . 51
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3.5 Output visualization. Model output at test scenes from four different

sea ice extraction models left to right: watershed segmentation, a basic

U-Net, the best U-Net according to validation metrics, and the best U-

Net according to test metrics. Test scenes are 3000×3000 meter WV-3

multispectral scenes from the Antarctic coastline tiled with a 50% over-

lap at the input size required by each model. True positives, false pos-

itives, and false negatives are shown in transparent green, purple, and

pink, respectively. My final model generates few if any false-positive

errors in land and fast-ice imagery consistently avoids rock formations

and icebergs, does not create artifacts at tiles edges, and still captures

the majority of pack-ice within predicted masks. Imagery copyright

DigitalGlobe, Inc. 2021. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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4.1 Simplified diagram for SealNet 2.0 showing the training of individ-

ual CNN models, model hyperparameter search, and model ensem-

bling. Boxes colored in light-blue denote models, orange boxes denote

datasets, and gray boxes denote model output. Thick black lines from

datasets to models indicate model training. Dashed vertical lines indi-

cate model selection steps. The best individual CNN models are trained

on seal detection, including centroid segmentation and seal count re-

gression, using a random search with training and validation, and the

f1-score at the expert-selected test set for model selection. The best

ensembling models are selected via Bayesian optimization, using top-

10 CNN model predictions for the training set, validation set, and the

expert-selected test set as dependent variables for training; true posi-

tive vs. false positive as the response variable; and the f1-score at the

validation split from the random crops test set as a validation metric.

Finally, I use the test portion of the random crops test set to estimate the

out-of-sample performance of the best-performing model ensemble. . . 70

4.2 Training/validation set (light-blue), expert-selected test set (magenta),

and random-crop test set (orange). Polygons denote entire Worldview-

3 panchromatic scenes for the training/validation set and the expert-

selected test set, and 1 km2 crops within panchromatic Worldview-3

scenes for the random crops test set. . . . . . . . . . . . . . . . . . . . . . 71
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4.3 Expert-selected test set f1-score for hyperparameter search experiments

from different computer vision domains. To ensure a fair compari-

son of models from different domains, semantic segmentation output

masks are passed through a sigmoid transform and thresholded to ex-

tract mask centroids. Similarly, instance segmentation and object de-

tection output bounding boxes are converted to centroids to evaluate

matches with ‘truth’ centroids. To avoid unnecessary expenditure of

GPU credits, experiments that did not perform well on the validation

set (validation f1-score > 0.7 for semantic segmentation models and >0.5

for instance segmentation and object detection models) were not carried

into testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Results from random search hyperparameter study for semantic seg-

mentation models, with phases one (orange) and two (teal). For contin-

uous hyperparameters—namely, regression head weight, learning rate,

regression head dropout, and negative-to-positive ratio—each circle cor-

responds to an independent random search experiment. For the contin-

uous hyperparameters—regression head weight, learning rate, negative-

to-positive ratio, and the discrete parameters—backbone architecture,

patience, and test time augmentation, I narrowed down the range of

options to speed up convergence on a best-performing model. Exper-

iments for which test f1-score was below 0.01 are excluded from this

plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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4.5 Side-by-side comparison between phase 2 experiment results with (1)

and without (2) regression post-processing. Post-processing consisted

of discarding predicted points within patches where regression output

(i.e., predicted number of seals in a patch) is smaller than a specified

threshold. For each model, I explore a range of thresholds to obtain the

maximum possible test f1-score obtained after post-processing, using

the same optimal threshold across the entire expert-selected test set. . . . 74

4.6 Feature importance for ensemble model features grouped by CNN in-

dex (a) and feature type (b). Ensemble models were either CatBoost or

XGBoost tree-based ensembles trained for classifying false-positive and

true-positive seal detections. Models were derived from a hyperparam-

eter search using a training set with the logits, predicted seal counts, and

distances from crop centers from the output of 10 U-Net CNNs at the

validation and expert-selected test sets. Feature importances were ob-

tained via Shapley scores at the validation portion of the random crops

test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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4.7 Prediction samples from my best ensemble model on eight scenes from

the random crops test set. Samples were chosen to represent scenar-

ios where the model predicts seal locations correctly (panels a–d), fails

to find existing seals (panels d–f), and annotates background objects as

seals (panels g,h). Seals marked with teal circles indicate true positives

(i.e., predicted seal present in consensus dataset), whereas purple and

orange circles indicate false-negative and false-positive seals, respec-

tively. Numbers next to circle annotations indicate the number of hu-

man observers that agreed with that particular model annotation. Num-

ber ‘1’ annotations unaccompanied by circles in panel e indicate edge

cases where a human observer annotated a seal that was not present in

the consensus dataset or model predictions. Imagery copyright Maxar

Technologies Inc. 2022. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Schematic for the SealNet2.0 fully automated seal detection pipeline.

Starting from the full corpus of suitable WV-3 scenes below 55 degrees

of latitude, I follow a 5-step pipeline to obtain seal density estimates: a)

find scenes that overlap with an ADD-derived ocean mask (i.e. scenes

over the ocean); b) process scenes over the ocean with a sea ice segmen-

tation CNN to obtain the subset of scenes with relevant seal habitat; c)

process scenes with sea ice with an ensemble of seal detection CNNs to

obtain georeferenced putative seals; d) use a detection model that uses

haul out probability and model uncertainty to draw credible intervals

for seal population sizes; e) aggregate by geography and time to get

density estimates. The outside citizen science annotation loop serves as

a guardrail to validate the quality of model output and flag potential

abnormalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
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5.2 Putative seals from trial SealNet2.0 run. Every magenta spot indicates

a putative seal detected with SealNet2.0 on a set of 14983 WV-3 images.

Input images ranged from late September to early April in the years

2014 through 2021. Imagery copyright DigitalGlobe, Inc. 2021. . . . . . 82
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Input images ranged from late September to early April in the years

2014 through 2021. Imagery copyright DigitalGlobe, Inc. 2021. . . . . . 89
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2.1 Training set classes. For each of the first 10 classes, patches were manu-

ally annotated on WV-3 imagery following the annotation method listed

for that label. Training patches under the ‘shadow’ label were extracted

using an early iteration of SealNet to find seals on scenes without seals.

Note that the total number of scenes is smaller than the added number

for all labels since there are often several different labels in a single scene. 20

2.2 Test performance. Predicted count, precision, and recall using all model

variants are shown for scenes a–d. I only include a predicted count

for scene e because we cannot get meaningful precision or recall scores

without ground-truth seal points. Performance metrics are obtained

by comparing model-predicted seal locations with a consensus review

from two experienced human observers. Patch counts reflect a stride

that keeps a 75% overlap between neighboring cells (see Fig. 2.2). . . . . 22
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3.1 WorldView-3 imagery. I used a set of 43 multispectral WV-3 images

to train, validate and test my ice floe segmentation models. To reduce

GPU memory footprint during training and avoid further modifications

to my CNN architectures, all imagery was converted from the native 8-

band multispectral channels to three-channel images by extracting the

red, green, and blue bands. Due to lighting limitations inherent to the

poles and to capture the reproductive seasons of Antarctic megafauna,

my imagery was acquired in a period ranging from November 20 to

April 7 (summer - early spring) in the years of 2014, 2015, 2016, and

2017. All the imagery used in the study is cloud-free. Repeated consec-

utive catalog IDs indicate different scenes within the same strip. . . . . . 36

3.2 Training datasets. Number of scenes and total area covered by positive

(i.e. patches with pack-ice) and negative (i.e. patches without pack-ice)

patches within each of my datasets. Image annotations consisted of bi-

nary pixel masks that denote whether a pixel in a patch represents pack-

ice. Hand-labeled masks were drawn over 3000×3000 meter crops at

strategic locations whereas watershed derived masks were extracted by

running a sliding window over scene regions marked by irregular poly-

gons. Patches with watershed derived masks are used exclusively dur-

ing training, whereas patches with hand-labeled masks are split equally

between training, validation and test sets. Negative training patches

were shared across all three training sets. To avoid inflation in my val-

idation metric scores, I set aside a distinct set of negative images for

validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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3.3 Model performance. I show the f1-scores on validation and test sets

of the best-performing model iteration across brackets input size and

dataset, as well as the number of random search experiments, runs

within each bracket trained from randomly initialized parameter weights

(i.e., from scratch) or fine-tuning from a previous model, respectively.

Validation f1-scores are obtained by averaging out the f1-scores from

individual patches in the validation set. Test f1-scores reported are av-

erages across the f1-score for all 19 test scenes obtained after output

patches were merged into a mosaic, more akin to production settings,

with the standard error as a measurement of spread. Test f1-scores from

the same watershed segmentation approach I used to extract weakly-

labeled images are provided as a baseline for U-Net-based models. My

watershed segmentation model is implemented in Python using the

numpy and OpenCV libraries and my U-Net CNN is implemented in

PyTorch by swapping the original U-Net down-sampling layer for a

ResNet34 encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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4.1 Out of sample performance for human observers (with and without the

help of AI output), individual CNN models, and model ensembles mea-

sured at the random crops tests set. AI help is provided through the

output of a simple ensemble model (i.e., an ElasticNet classifier, ‘en-

semble naive’), with a color gradient based on model certainty. Because

whether an observer will have access to AI help is assigned indepen-

dently at random, human observers had different sets of imagery pro-

cessed with the aid of AI output. U-Nets 1–5 are ordered according to

their ranking based on f1-score in the expert-selected test set. SealNet

1.0 predictions were obtained with the original SealNet. Similarly, en-

semble models 1–5 are numbered in descending order of f1-score on the

validation portion of the random crops test set. I include the correlation

between model logits and ‘truth’ labels as a measurement of consistency. 66
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5.1 Comprehensive seal survey method comparison including cost, cover-

age, and emissions involved. Sampling methods include helicopters

(H), fixed-wing airplanes (P), research ships (RS), fixed-wing drones

(UAV), human observers, and my fully automated pipeline (AI). An-

nual estimates for coverage, cost, and emissions assume a full 1200-hour

Antarctic field season for on-site surveys and a 2000-hour full work year

for human observers. An estimate for 384 human observers is included

to illustrate the requirements for processing an entire season of VHR im-

agery manually. Because UAV operations require a support vessel I in-

clude an estimate of cost with six PW-ZOOM UAVs aboard the US Navy

ice breaker RV Laurence M. Gould (LMG). Operating costs for the LMG

do not include renting or buying the vessel itself. Similarly, the costs

of annotating records obtained from cameras fixed-winged planes, and

drones are omitted from this summary. Since I did not take refueling

and maintenance operations into account in my calculations, coverage

and cost for aircraft should be treated as an upper bound. . . . . . . . . . 83
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Chapter 1

Introduction

The Southern Ocean (SO), a mass of water encircling the Antarctic continent, harbors

major seasonal hotspots for primary productivity [5] and plays a key role in maintain-

ing ocean biogeochemical cycles [58, 25]. The SO remains encased in sea ice through

the Antarctic winter, with little to no sunlight – imposing a severe limitation on pro-

ductivity during that time. As the ice melts through the spring and summer, and

the Antarctic continent bathes in nearly permanent sunlight, massive phytoplankton

blooms pop up across the SO ecosystem [125, 21]. Phytoplankton takes advantage

of the abundant micronutrients and sunlight to capture CO2, which, after predation

by primary consumers, gets sunk into the bottom of the ocean, acting as a biological

pump [25, 58].

Among primary consumers, Antarctic krill (Euphasia superba), a small euphausiid

shrimp, through its complex, multi-year, sea-ice dependent life-cycle, is able to track

phytoplankton blooms through space and time. At the peak of its abundance dur-

ing the austral summer, krill attains what could be the largest biomass among multi-

cellular animals (379 million tonnes, [6]). While relatively simple at its base, the SO

foodweb fans out to sustain a plethora of krill consumers [137], from squid and fish to

seabirds and marine mammals. However, its strong link with sea ice dynamics [143,

113] put krill in a delicate position when faced with the anthropogenic climate change

crisis [43, 69]. To make things worse, industrial krill fisheries [100, 44] have been on the

rise and add a layer of difficulty in surveying krill populations and, through them, the
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viability of krill consumers [129, 137]. Thus, keeping a close eye on krill populations

is pivotal for gauging the health of the SO ecosystem as a whole.

Surveying krill directly to estimate its stocks, however, is a daunting task. Krill

populations follow patchy distributions [138] and can perform complex horizontal

and vertical migrations to track resources. Krill mega-aggregations (e.g. [102]) follow

unpredictable algal blooms, making them hard to track and hampering our efforts to

extrapolate global stocks from local samples [7]. Some krill predators, however, spend

a considerable portion of their life above the surface, at predictable times and places.

This makes them far more amenable to repeated population surveys. Among those,

pack-ice seals, a group of four sea-ice-dwelling species, the crabeater seal (Lobodon

carcinophaga), Weddell seal (Leptonychotes weddellii), leopard seal (Hydrurga leptonyx)

and the Ross seal (Omnatophoca Rossi), are especially good candidates for not only do

they haul out on sea ice, but they have a pan-Antarctic distribution and, due to their

large size (2 - 4m) and the fact that they do not form tight aggregations like typical

pinnipeds, they can be individually identified in very-high-resolution (VHR) remote

sensing imagery (e.g. [50]). Crabeater seals, the most abundant of the four species by

a large margin [56], are specialist krill predators [128, 129]. Through this tight trophic

link, regular monitoring of crabeater seal populations can play the role of an ecological

barometer for the SO ecosystem.

This central position as indicator species for the SO ecosystem bred many attempts

at surveying pack-ice seal populations. The earliest efforts to do so are reviewed

in [103] but a more recent and highly structured attempt at estimating pan-Antarctic

pack-ice seal population abundance was organized by the Scientific Committee for

Antarctic Research under the umbrella of the International Antarctic Pack Ice Seals

(APIS) program [1]. APIS was a large collaboration between six countries from 1994 to

2000 that employed vessel- and helicopter-based line transects to sample seal den-

sities at several locations and times. Though such studies brought invaluable in-

sights on seal biology (e.g., [128, 114, 56]), the spatial and temporal coverages are
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limited to draw continent-wide population estimates. Aerial transect-based monitor-

ing programs such as APIS, especially in remote locations such as the SO, are not only

resource-intensive [1] but dangerous for field biologists [121], making them unfeasible

as means to repeatedly survey pack-ice seal populations.

Fortunately, VHR satellite imagery may soon be a viable alternative for aerial sur-

veys, providing greater spatial coverage and, due to its dramatically lower cost, in-

creased repeatability. The use of VHR satellite imagery for wildlife surveys has ex-

ploded in recent years and includes demonstration projects for southern elephant seals

[92], polar bears [133] and African ungulates [147, 150], emperor penguins [46], whales

[16], as well as seabird species whose presence and abundance can be estimated indi-

rectly using the guano stain at the colony [73, 84]. Even at the highest resolution for

commercially available imagery (0.31m / pixel), however, a 2-4 meter pack ice seal

occupies only a handful of pixels. This lack of detail erodes confidence in detected

objects and may create a heavy dependency on contextual clues. Moreover, character-

istics such as the off-nadir angle from the sensor, lighting conditions, and cloud cover

expand the breadth of scenarios encountered when annotating seals beyond the al-

ready heterogeneous sea ice landscape they inhabit. As such, seal annotation in VHR

imagery is extremely time-consuming and is a skill that takes a long time to master. Al-

though VHR imagery covers enough area for comprehensive, continent-scale surveys

[53], the bottleneck from laborious expert seal annotation imposes severe limitations

on spatial and temporal scales for pack ice seal surveys.

Citizen scientist campaigns can drastically improve the potential area surveyed by

recruiting masses of volunteer annotators [142]. The extra manpower delivered by un-

skilled annotators – given the difficulty of the task at hand – comes at the obvious cost

of generating less reliable labels [117]. Thus, statistical tools to provide proper treat-

ment to unreliable labels (e.g. [117]) are pivotal to drawing ecological insights. Despite

these issues, citizen scientist campaigns have been successfully applied to pack ice seal

surveys in VHR in a recent effort by LaRue and colleagues in the Satellites Over Seals
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(SOS) project [76]. The SOS project, running from 2016 to 2018, recruited >325,000 vol-

unteer annotators to go over 790 Worldview-2 (WV-2) VHR scenes, with an on-nadir

resolution of 0.6m / pixel, covering a totality of 268,611 km2. The project presented

volunteer annotators with 500 m x 500 m cropped WV-2 images and queried for the

presence/absence of seals in such images, and treated low-quality annotations from

volunteers with the CrowdRank algorithm, a consensus-based approach that ranks

observers based on how much they agree or disagree with their peers. CrowdRank-

derived rankings are then used to weight volunteer annotations when aggregating

labels for a cropped image. While SOS covered an unprecedented area for pack-ice

seal studies in VHR and used it to create the most comprehensive global population

estimate for the Weddell seal to date [75], its applicability as a long-term survey pro-

gram is questionable given it has only been applied and tested in a constrained sce-

nario of hand-selected locations over fast-ice in November 2011 [76]. Moreover, the

project’s simplification of the annotation process to binary classification on cropped

images, while understandable given the experience constraints from annotators, hin-

ders the resolution and therefore the usefulness of the resulting output to understand

the spatial aggregation patterns for pack-ice seals.

The field of computer vision (CV), particularly deep learning approaches powered

by modern GPUs and large annotated datasets (e.g., [116]), has demonstrated the po-

tential for assisting in several laborious visual tasks across different application areas

(e.g., agriculture [136], construction [146], and medicine [42]). With the populariza-

tion of commercial satellites, [10], extremely large amounts of remote sensing imagery

are amassed on a daily basis. In order to convert imagery into actionable insights, CV

solutions for remote sensing imagery have become commonplace (e.g., sea ice segmen-

tation and classification [51, 18, 57]). In niche applications such as detecting wildlife,

however, the lack of expert annotators to create large training datasets imposes a bar-

rier to successfully applying such methods [141]. Nonetheless, there have been several

proof-of-concept studies on the applicability of CV on VHR to detect/measure whales
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[17], pack-ice seals [50], and penguin colonies [85]. Among the difficulties of moving

from proof-of-concept studies on wildlife detection in VHR to fully automated sur-

vey programs is ensuring that conditions at which detection models are trained and

validated capture the full range of scenarios encountered when making predictions.

1.1 Roadmap to a fully-automated seal detection moni-

toring program

With the success of CV at tackling a series of complex tasks in related fields, I em-

barked on the task of developing a fully-automated tool to survey pack-ice seals. The

first step to do so is amassing a body of labeled images to be used for training, with

a portion of those set aside for validation (i.e. hyperparameter tuning and model se-

lection) and testing (i.e. estimating out-of-sample performance). To maximize the

certainty of annotation labels, I restricted automated seal detection work to the high-

est resolution available for commercial satellite imagery (0.31m / pixel), at the cost

of longer processing times and lower spatial coverage. While aiming at classifying

images for the presence of seals simplifies the annotation process, image-level labels

provide sparse information as to why a given image was labeled as such, hampering

the usability of such annotations as training samples for ML models such as CNNs.

On the other hand, annotating every pixel covered by a seal is extremely laborious

and makes it challenging to create a corpus of images large (and diverse) enough to

train seal detection CNNs. In a compromise between the rich signal given by pixel-

level seal masks and the convenient, but sparse, image-level labels, I created my train-

ing datasets by annotating seals at their center-most pixel (i.e. centroid). Since the

model also needs to learn with a seal "is not", images with seal centroid annotations

were complemented with a large set of seal-free images covering Antarctic coastline

features such as pack-ice, glaciers, as well as land features such as rocks and emperor
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penguin colonies. I then use this weakly annotated dataset to train a U-Net [115] vari-

ant, the SealNet [50], designed to make the most of the relatively weak signal from

centroid annotations by simultaneously segmenting out seal centroids, classifying im-

ages for the presence of seals and counting the number of seals in each image. While

SealNet worked as a pioneer, proof-of-concept study for automated seal detection in

VHR, it only worked properly on the simplest scenarios, with high contrast between

seals and their surrounding, and was not fit to address the complexity and breadth

presented by Antarctic coastline scenery [50].

Pack-ice seals, hence their name, have a tight link with sea ice dynamics [99], both

directly by relying on sea ice to breed, molt, and avoid predation from killer whales,

and indirectly through their relationship with Antarctic krill – also highly dependant

upon sea ice conditions [143]. As such, keeping track of sea ice conditions is key to our

efforts to model and understand seal populations through space and time [99]. Beyond

its ecological link to pack ice seals, sea ice conditions affect the visual complexity of

seal environments in VHR imagery, potentially hindering our ability to detect them.

With the intent of collecting a pivotal environmental variable to model seal presence

and detectability at the same resolution for which we detected seals, I built the first

ice floe segmentation model for VHR imagery [51]. Taking advantage of substantial

high-performance computing (HPC) resources for hyperparameter search, this CNN-

based approach is capable of segmenting out ice floes surrounded by water bodies

while avoiding other common features in the Antarctic coast such as glaciers, icebergs,

and rocks [51]. Beyond providing high-resolution information on floe size and sea ice

cover, the CNN was able to visually capture seal habitat at a broad level, which, in

practice, allowed us to narrow down the focus of seal detection models [53].

Three years past the original SealNet study [50], with access to substantial HPC

resources, superior CNN architectures available, and the potential to focus on sea ice

only through the sea ice segmentation model, I performed a complete overhaul in Seal-

Net. The SealNet2.0 [52] effort started with a complete revision of annotation datasets:
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the now unnecessary – and potentially confounding – land features were removed,

several more annotations on novel scenes were added, and every single scene with

seal annotations was scoured to simultaneously increase the number of positive train-

ing samples and reduce the number of false-negatives in our training set. The last

addition to our annotation dataset, was a set of 300 unique, randomly sampled, 1km2

WV-3 scene crops, spanning across 87 scenes, with overlapping annotations by three

human observers. The latter provides a trustworthy approximation for scenes encoun-

tered when processing new imagery, allowing for robust estimates of out-of-sample

performance. Taking full advantage of this vastly improved dataset, SealNet 2.0 uses

a tree-based model [28] to combine output from several U-Net CNNs into predictions

that outperform those of two human observers in terms of out-of-sample precision

and recall. The addition of a tree-based model also comes with the desired property

of model-derived probabilities that are closer to "truth" annotation labels, making this

approach more amenable for modeling detection errors [52].

In a comprehensive comparison with other available sampling methods for pack-

ice seal surveys [53] able to provide output at a lower cost than every sampling method

but helicopters, with the advantages of 1) storing permanent records for further veri-

fication; 2) avoiding the considerable dangers involved with operating aircraft in the

Antarctic; 3) potential to cover higher spatial and temporal dimensions; 4) ease of scal-

ability with the addition of more GPUs; and 5) several orders of magnitude fewer CO2

emissions. At its current state, SealNet2.0 delivers reliable putative seal locations in

scenarios where seals can be confidently found by human observers in VHR [52]. To

obtain continental-scale estimates for seal densities over units of time and area, we

need statistical models to address: 1) the probability of detecting seals given environ-

mental features such as sea ice conditions and visual complexity of the surrounding

environment; 2) seal haul-out behavior through space and time; and 3) the relation-

ship between the presence of seals and environmental factors such as bathymetry, dis-

tance to the continental shelf and primary productivity. Further reducing the focus of
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SealNet2.0 predictions by using an ancillary CNN classifier that flags locations where

seals, if present, could be accurately spotted has the potential to reduce the consider-

able detectability-related difficulties. In the present work, I demonstrate the viability

of a fully-automated, CNN-based, detection pipeline as an accurate, clean, and cost-

efficient tool for regularly monitoring Antarctic pack-ice seals.
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Chapter 2

SealNet: A fully-automated pack-ice

seal detection pipeline for sub-meter

satellite imagery

2.1 Abstract

Antarctic pack-ice seals, a group of four species of true seals (Phocidae), play a piv-

otal role in the Southern Ocean foodweb as wide-ranging predators of Antarctic krill

(Euphausia superba). Due to their circumpolar distribution and the remoteness and

vastness of their habitat, little is known about their population sizes. Estimating pack-

ice seal population sizes and trends is key to understanding how the Southern Ocean

ecosystem will react to threats such as climate-change-driven sea ice loss and krill fish-

ing. I present a functional pack-ice seal detection pipeline using Worldview-3 imagery

and a Convolutional Neural Network that counts and locates seal centroids. I pro-

pose a new CNN architecture that detects objects by combining semantic segmentation

heatmaps with binary classification and counting by regression. My pipeline locates

over 30% of seals, when compared to consensus counts from human experts, and re-

duces the time required for seal detection by 95% (assuming just a single GPU). While

larger training sets and continued algorithm development will no doubt improve clas-

sification accuracy, my pipeline, which can be easily adapted for other large-bodied
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animals visible in sub-meter satellite imagery, demonstrates the potential for machine

learning to vastly expand my capacity for regular pack-ice seal surveys and, in doing

so, will contribute to ongoing international efforts to monitor pack-ice seals.

2.2 Introduction

Antarctic pack-ice seals (crabeater seals [Lobodon carcinophaga], Weddell seals [Leptony-

chotes weddelli], leopard seals [Hydrurga leptonyx] and Ross seals [Omnatophoca rossii],

within the Phocidae family), as a group, are key krill predators in the Southern Ocean

(SO). Monitoring their populations through vessel-based and aircraft-based surveys

has been a major task for Antarctic research programs (e.g. the APIS program [1]).

While previous surveys provide important baselines for seal population sizes (e.g.

[56]), very-high-resolution satellite imagery has been proposed as a potentially more

cost-efficient and scalable tool for surveying large-bodied animals inhabiting remote

locations such as southern elephant seals [92], polar bears [133] and African ungu-

lates [147, 150]. While large enough to be seen in VHR imagery, pack-ice seals are

particularly hard to detect since their preferred haul-out environment, pack ice [72,

11] changes on short (hourly) and long (seasonal) time scales, and the information

content of each individual seal in an image is exceptionally low (Fig. 2.1).

Though it is possible to find seal-sized objects in VHR imagery manually, this la-

borious approach is only feasible at local scales (e.g., [77]), introduces observer biases

[35], and is not easily scaled to allow annotation of VHR images captured within the

range of pack-ice seals. Thus, repeatable, large-scale wildlife surveys require auto-

mated detection systems [31]. Traditional pixel or object-based methods for remote

sensing scene understanding (RSISU) (e.g. [70, 93]), perhaps due to their reliance on

hand-crafted features and spectral signatures, struggle at the increased granularity

posed by high spatial resolution satellite imagery. As is the case for many fields such

as computer vision [139] and natural language processing [36], deep learning, in the
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FIGURE 2.1: Individual pack-ice seals viewed in panchromatic WV-3 im-
agery. The scale bar shows one meter, with a typical seal about 2.5 m
long covering 20–30 pixels (in total). All three seals in this image were ex-
tracted from the same scene, but the resolution may change depending on
the angle at which the image was captured by the WV-3 sensor. Satellite

imagery copyright DigitalGlobe, Inc. 2019.

specific flavor of Convolutional Neural Networks (CNNs), are now the state-of-the-

art for RSISU [55] and is likely my best candidate for automated seal detection in high

spatial resolution imagery. CNNs work by learning a series of convolution kernels

– analogous to image processing kernels – as they learn to map inputs in the train-

ing data to their corresponding labels. CNNs have now been successfully employed

in many ecological settings such as identifying whales [17, 10], finding mammals in

the African Savanna with UAV imagery [67], and classifying animals in camera trap

pictures [101].

In this work, I explore the viability of CNNs to locate pack-ice seals in Antarctica

and the scalability of this approach, with the ultimate goal of facilitating continental-

scale population counts for pack-ice seals and other large bodied animals. Like many

other wildlife detection sampling schemes [67, 147], however, the vast majority of the

VHR imagery contains no true positives (i.e. seals), creating the potential for signif-

icant false positives even if the false positive rate is low. I propose a seal detection

pipeline that i) determines whether a portion of the image is occupied by seals; ii)

counts seals in that portion of the image and; iii) locates the centroid of each identified
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seal. All of the above is performed in a single pass with my proposed CNN archi-

tecture, SealNet. 1 In my validation and test sets, this approach is superior to pure

regression or semantic segmentation approaches.

2.3 Materials and Methods

2.3.1 Selecting imagery

For this pipeline, I use Worldview 3 (WV-3) imagery provided by DigitalGlobe, Inc.,

which has the highest available resolution for commercial imagery with a 0.3 m at-

nadir resolution in panchromatic imagery and 1.5 m with 16 multispectral bands (Red,

Green, Blue, Red Edge, Coastal, Yellow, and 2 near-infrared bands). Only the panchro-

matic band was used for this work because individual seals are difficult to spot at

lower resolutions and because the color information is not highly informative for clas-

sification (at least for human interpreters). Due to GPU memory limitations imposed

by my CNN architecture, we subdivide WV-3 scenes into 224 × 224 pixel images (here-

after ‘patches’) (Fig. 2.2). Prior to prediction, each WV-3 scene is split into approxi-

mately 500,000 patches, keeping a 75% overlap between neighboring patches to ensure

corners are not overlooked by the CNN classifier.

2.3.2 Building a training set

A training set with 75,718 raw training samples was manually assembled to train seal

detection CNNs. Raw training samples are generated by extracting 450 × 450 pixel im-

ages (hereafter ‘raw training patches’), roughly covering two hectares, at predefined

locations (i.e. training points) on a total of 34 WV-3 scenes (Fig. 2.3) selected from the

Polar Geospatial Center catalog. Training points were annotated by visually inspect-

ing WV-3 scenes for locations with the 10 following features: seals on pack ice, seals on

fast ice, emperor penguin colonies, marching emperor penguins, cracks on the sea ice,
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FIGURE 2.2: Sampling scheme. WV-3 scenes are split into smaller
‘patches’ to fit CNN requirements for input size. To create a training set,
450 × 450 training patches are extracted around features of interest (light-
blue circles) on a scene, which may overlap depending on how close fea-
tures are and CNN input size (orange squares on the bottom right). For
prediction, whole scenes get chopped into 224 × 224 pixel patches using a
sliding-window approach, with a stride that keeps a 75% overlap on both
the x and y axes. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.) Satellite

imagery copyright DigitalGlobe, Inc. 2019.

glaciers, fast-ice, pack ice, rock outcrops, and open water. For the last seven categories

(background/non-target), I place an array of equidistant training points, separated

by 100 m, over areas where a particular class was predominant, removing any occa-

sional points that did not fit into that class. For emperor penguin colony points, I cov-

ered colonies with a similar array of equidistant points, with a 10 m distance between

neighboring points. Groups of three or more emperor penguins arranged in lines were

labeled as marching emperors, with training point annotations centered on one of the

penguins. Since crabeater seals, Ross seals, and leopard seals are confined to pack-

ice habitat [8, 12, 127], and the first species is far more abundant than the latter two

[130, 131, 129], every seal on pack-ice in my training set is assumed to be a crabeater

seal. Seals on fast ice are assumed to be Weddell seals since that is the only one of the

four species that is strongly associated with fast ice habitat [12, 127]. To reduce the
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annotation effort, my seal training points – both Weddell and crabeater – consist of a

single point, placed at the centroid of each seal. When generating seal training images,

I include the location of seal centroids within those images along with the image itself

– necessary to derive ground truth seal locations and counts within training patches.

Finally, my seal detection CNN, trained on the training set described above, was de-

ployed on 18 new scenes, where seals could not be found upon visual inspection, gen-

erating a total of 10,766 training points, which were then added to the training set as a

separate class for seal-shaped shadows. To evaluate and select models during training,

my training data was split into training and validation sets. To prevent spatial overlap

between training and validation images, I split entire groups of seals between training

and validation, keeping roughly 90% of the seal training points for training and the

remaining for validation. Background class training points were split by scene, where

each scene with training points for a given background class is either used for training

or validation. Background scenes were also split to keep roughly 90% of the training

points for training and the remaining 10% for validation.

2.3.3 Setting up the convolutional neural network

Our seal detection pipeline (Fig. 2.4) detects seal centroids in VHR imagery following

4 steps: 1) tile input scene into ‘patches’ that can be classified using the CNN; 2) run

each patch through the CNN to get a probability of harboring one or more seals (oc-

cupancy probability), a seal count, and a seal centroid intensity heatmap; 3) remove

predictions below a predefined occupancy probability threshold; and 4) find the n

greatest intensity peaks in the heatmap, where n is the seal count. My proposed CNN

architecture was assembled by adding two branches to the U-Net [115] architecture: a

branch for occupancy, branching out of the second U-Net max-pooling layer, based on

the DenseNet [62] architecture and a branch for counting, branching out of the fourth

U-Net max-pooling layer, based on the WideResnet architecture [152]. Apart from the
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regular intensity heatmap output from U-Net, my architecture also outputs an occu-

pancy probability and a seal count. All CNNs used here were implemented in PyTorch

[107].

2.3.4 Training

Our U-Net variant is trained to minimize the difference between predicted seal counts

and true seal counts, the difference between predicted occupancy and true occupancy

(‘1’ if there is at least one seal in the patch, ‘0’ otherwise), both measured with a Huber

loss and the difference between the predicted heatmap, with a sigmoid transform, and

an array with ‘1’ over seal centroid pixels, smoothed around the centroid with a 5 × 5

Gaussian kernel, and ‘0’ anywhere else – measured with a binary cross-entropy loss.

To ensure that seal training images and seal centroids within those training images

are as important during training as the more prevalent background training images

and non-centroid pixels, binary cross-entropy losses were weighted using the ratio be-

tween the former and the latter. Training is performed using an AdamW optimizer [82]

for 75 epochs (i.e. 75 complete runs through the training set), with an initial learning

rate of 1 × 10 3, which was gradually tapered down to 1 × 10 5 using a cosine anneal-

ing learning rate scheduler [81], and a batch size of 64. Training images are sampled

with replacement from the training set using a weighted sampler that ensures equal

representation between training classes. Training images are normalized to have sim-

ilar means and variances and augmented using left-right mirroring, bottom-up mir-

roring, random rotations (0–180), slight changes to brightness and contrast, random

resized crops (0.675–1.2 of original scale, keeping the original aspect ratio) to the in-

put size required by the CNN (224 × 224 in the current pipeline) and hide-and- seek

transformations [124]. Whenever cropping and hide-and-seek transformations are ap-

plied to training images, seal locations within these, the number of seals on them, and

whether they are occupied are updated to reflect those of the augmented sample. For
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testing purposes, models were retrained with the same hyperparameter settings using

all training and validation samples for 150 epochs.

2.3.5 Validation

Our model is validated at the end of each epoch. Prior to predictions, validation im-

ages are normalized and center-cropped to the dimensions required by the CNN. Sim-

ilar to training, true counts and seal locations are adjusted to cropped validation im-

ages. Raw predictions on the validation set are converted to precision,

precision =
true positives

true positives + false positives

recall

recall =
true positives

true positives + false negatives

and f1-score

F1 = precision ∗ recall

where predicted seal centroids separated by no more than 5 pixels from a ground-

truth seal centroid are considered true positives. At the end of each validation phase,

validation losses, precision, recall and f1-scores are recorded. Whenever the f1-score

surpasses the previous best score, a model checkpoint with the weights for that for-

mulation is saved.

2.3.6 Testing

To test how SealNet generalizes to new imagery, I estimated out-of-sample precision

and recall by comparing model-generated seal locations with those from the consen-

sus of two experienced human observers on five novel scenes. First, test scenes were
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independently counted by two observers with experience surveying seals in Antarc-

tica and using VHR imagery (hereafter ‘observer 1’ and ‘observer 2’). When looking

for seals, observers followed a standardized counting procedure using a grid search

system with 2 km × 2 km grid cells that were each exhaustively searched for potential

seals. To create a consensus seal dataset for testing model performances, I started with

seal points flagged by both observers. Points flagged by a single observer, after be-

ing stripped of observer ID, were independently reviewed by both observers, adding

further seal points where both observers agreed upon to the final consensus dataset.

Prior to model predictions on the test set, test scenes are tiled out into patches, with

a 75% overlap between neighboring patches. Whenever multiple model predictions

from overlapping tiles output seal centroids within 1.5 m of each other, the centroid

with the highest heatmap intensity value is kept and the remaining centroids are dis-

carded. My test set (Fig. 2.5) includes a pair of scenes over pack ice, with high (1.16

seals/km2 ) and low (0.51 seals/km2 ) seal densities, a pair of scenes over fast-ice,

with high (4.06 seals/km2 ) and low (0.30 seals/km2 ) seal densities and a scene with-

out seal detection by the observers. Apart from variations in seal density, test scenes

were chosen to emulate scenarios likely to impact seal detectability, such as off-nadir

angles and lighting conditions.

2.4 Model evaluation

To test the SealNet architecture, precision and recall obtained on test and validation

sets with the full model are compared to those obtained with two simplified vari-

ants: i) the original U-Net architecture, trained only on heatmap matching; and ii)

U-Net with a branch for counting. Due to the lack of a regression layer, counts on

the original U-Net are obtained by applying a sigmoid transformation to the heatmap,

thresholding sigmoid transformed values by 0.1 (i.e. any value lower than 0.1 is set

to 0), and summing over all cells. Pure regression CNNs (e.g., CountCeption [108])
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were not tested here because the lack of input-image-sized heatmaps for counts ham-

pers localization and makes it difficult to match predicted centroids to ground-truth

centroids. Finally, due to the relatively small size of my training set, the potential for

improvement by acquiring more training data is investigated with a learning curve:

I train my models with increasingly larger subsets (n = 100, n = 300, n = 1000, n =

3000, n = 10,000 and n = 30,000) of my training set for 15 epochs and plot the highest

validation f1-scores – measured on the full validation set – against training set size. To

maintain equal representation between training classes while generating the learning

curve, training set subsets were sampled, without replacement, from the full train-

ing set using a weighted sampler. Though there are too few training images in some

classes (e.g., Weddell seals, n = 981) to keep classes balanced at the largest subset (n

= 30,000), the weighted sampler draws images with replacement. This ensures that,

though the full training set itself may not be balanced, batches of training images still

have equal class representation. Apart from the reduced number of epochs (75 vs. 15),

CNNs on reduced training sets were trained with the same hyperparameters as their

counterparts trained on the full training set.

2.5 Results

2.5.1 Validation

SealNet, with added branches for counting and occupancy, attained 0.887 precision

and 0.845 recall at my validation set, outperformed base U-Net (precision = 0.250,

recall = 0.993), but was slightly outperformed by U-Net + count (precision = 0.897,

recall = 0.853) (Fig. 2.6a). Adding a counting branch to U-Net, when compared with

heatmap thresholding approach, improved precision at my validation set more than

threefold, at the cost of a small decrement in recall. Adding an occupancy branch to

U-Net + count caused a slight decrease in precision and recall at my validation set.
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My validation metrics for SealNet use an occupancy threshold of 0.1 (i.e., patches with

a predicted occupancy probability lower than 0.1 are discarded by the model), which

can be tuned to tradeoff recall for precision and vice-versa. The learning curve for

SealNet (Fig. 2.6b) shows that validation f1-score increases as I add more training

data, suggesting that adding new samples to my training set would be very beneficial

to model performance.

2.5.2 Testing

Combining results from all five test scenes (Fig. 2.5) and comparing the results with

consensus counts from two human experts, SealNet outperforms U-Net + count on f1-

score, while both CNN architectures get better precision and recall than U-Net (Table

2.2). When deployed on an empty test scene (Fig. 2.5, subpanel e), SealNet was the

only architecture to not produce a single false positive; U-Net produced 26 false posi-

tives and U-Net + count produced a single false positive. When aggregating predicted

seals by group (using a 20-meter distance criterion to define group membership), U-

Net + count has a superior recall on finding lone seals than the other two architectures

(0.311 vs. 0.230 [SealNet] and 0.196 [U-Net]) on lone seals, while SealNet is superior on

finding seals inside groups from 3 to 5 seals and more than 10 seals (Fig. 2.8a). Groups

with a small number of seals were far more prevalent in my test scenes (Fig. 2.5) than

larger ones (Fig. 2.8b).

2.5.3 Human observer performance vs. CNN performance

When compared with a consensus review from both human observers, individual hu-

man observers made a considerable number of mistakes and were inconsistent across

different scenes (Table 2.2, see Observer 1 and 2). Even so, the human observer out-

performed the CNNs tested in this analysis but at the expense of considerably more

processing time (Table 2.2).
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TABLE 2.1: Training set classes. For each of the first 10 classes, patches
were manually annotated on WV-3 imagery following the annotation
method listed for that label. Training patches under the ‘shadow’ label
were extracted using an early iteration of SealNet to find seals on scenes
without seals. Note that the total number of scenes is smaller than the
added number for all labels since there are often several different labels

in a single scene.

Class label Annotation method N patches N scenes -

Crabeater 1 patch centered on each individual seal 4238 6
Weddell 1 patch centered on each individual seal 981 15
Emperor Array of patches with 10 m gaps over colony 7124 19
Marching-emperor 1 patch centered on each penguin line 1064 18
Pack ice Array of patches with 100 m gaps over area 17771 10
Ice-sheet Array of patches with 100 m gaps over area 20694 9
Glacier Array of patches with 100 m gaps over area 5762 4
Crack Array of patches with 100 m gaps over area 1449 4
Rock Array of patches with 100 m gaps over area 4836 6
Open-water Array of patches with 100 m gaps over area 11799 5
Shadow Extracted from CNN output in scenes with no seals 10766 518
Total - 86483 52

2.6 Discussion

2.6.1 CNN performance

Even with a relatively small training set (Table 2.1), weakly-supervised training sam-

ples, and a test set with only 1168 seals distributed over 150,000 non-overlapping

patches, my pipeline often produces reasonable predictions, including unmistakable

seals missed by my double-observer count (Fig. 2.7). In contrast with typical usages of

deep learning for RSISU, which relies on bounding box-based approaches (e.g. YOLO

[112]), I explore instance-based approaches, in the form of U-Net variants, for object

detection in remote sensing scenes. Apart from requiring lower annotation effort (i.e.

centroids vs. bounding boxes), my approach excels at object localization with little to

no post-processing non-maximum suppression efforts. Similar to Le et al. [85], this

work highlights the potential for weakly-supervised approaches on remote sensing

tasks.
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When compared with test set counts from my double-observer consensus set, my

most sensitive model finds over 35% of seals, generating 1321 false positives, while

my most precise model finds 30% of seals, generating 604 false positives. Perhaps due

to the lower information content, seals hauling out by themselves were more often

missed by the CNNs than those in larger groups (Figs. 2.7, 2.8a). Although group

size had a profound impact on recall (Fig, 2.8a), effects were not consistent across my

3 model architectures. These variations can be used to divide predictions between

different models (e.g., U-Net + count on small groups and SealNet on large ones),

model detection errors, and, in semi-automated pipelines, highlight predictions that

will require more attention from human observers. SealNet predictions are still not

as reliable as those obtained by an experienced human observer. However, using my

pipeline with a single modern GPU is over 10× faster than counting by hand. While

similar studies in wildlife samples from aerial or VHR imagery like Salberg [118] and

Xue et al. [147] report higher performance scores, the first uses aerial imagery, with far

superior spatial resolution, and the second relies on expert opinion for inference, in

contrast to my fully automated pipeline. Moreover, both use less rigorous testing than

demonstrated here for SealNet (i.e. small test sets, cross-validation on the training set,

and overlap between training and testing scenes).

There are large differences between validation (Fig. 2.6a) and test performance

metrics (Table 2.2), with test performance showing dramatically lower precision and

recall. This outcome may be explained by the relatively small size of my validation set

(8715 patches across 49 scenes) and by the small number of test scenes (n = 5), which

may have caused my validation set to be insufficiently representative of the problem

at hand (i.e. finding seals in WV-3 scenes from the Antarctic coastline) and/or my

test set to be a biased sample of typical Antarctic scenes. Similar to results from Aich

and Stavness [2], combining heatmap activation with counting by regression output

improves precision and recall (Fig. 2.6a). Besides greatly improving precision at the

cost of some recall at my chosen threshold of 0.1, my occupancy branch gives us the
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TABLE 2.2: Test performance. Predicted count, precision, and recall us-
ing all model variants are shown for scenes a–d. I only include a pre-
dicted count for scene e because we cannot get meaningful precision or
recall scores without ground-truth seal points. Performance metrics are
obtained by comparing model-predicted seal locations with a consensus
review from two experienced human observers. Patch counts reflect a
stride that keeps a 75% overlap between neighboring cells (see Fig. 2.2).

Model Scene a Scene b Scene c Scene d Scene e
Consensus ct: 106 Consensus ct: 732 Consensus ct: 282 Consensus ct: 48 Consensus ct: 0
Patches: 127964 Patches: 127332 Patches: 138308 Patches: 78334 Patches: 173340

SealNet Count: 57 Count: 809 Count: 58 Count: 33 Count: 0
Precision: 0.492 Precision: 0.344 Precision: 0.519 Precision: 0.324 -
Recall: 0.277 Recall: 0.377 Recall: 0.133 Recall: 0.224 -

U-Net Count: 461 Count: 4865 Count: 906 Count: 246 Count: 26
Precision: 0.049 Precision: 0.049 Precision: 0.0073 Precision: 0.032 -
Recall: 0.207 Recall: 0.319 Recall: 0.223 Recall: 0.163 -

U-Net + count Count: 191 Count: 1267 Count: 139 Count: 131 Count: 1
Precision: 0.179 Precision: 0.240 Precision: 0.430 Precision: 0.134 -
Recall: 0.315 Recall: 0.402 Recall: 0.226 Recall: 0.353 -

Observer 1 Count: 50 Count: 1321 Count: 299 Count: 45 Count: 0
Precision: 0.641 Precision: 0.527 Precision: 0.569 Precision: 0.639 -
Recall: 0.373 Recall: 0.777 Recall: 0.593 Recall: 0.613 -

Observer 2 Count: 168 Count: 732 Count: 218 Count: 72 Count: 1
Precision: 0.580 Precision: 0.635 Precision: 0.533 Precision: 0.527 -
Recall: 0.784 Recall: 0.635 Recall: 0.437 Recall: 0.716 -

flexibility to tradeoff precision and recall by picking more strict or lenient threshold

values. Learning curve results (Fig. 2.6b) suggest that acquiring more training data

can lead to substantial improvements in prediction accuracy, though I caution that my

validation set may not be sufficiently representative of future test settings. Though

our use of dropout, hide-and-seek transforms during data augmentation and multi-

task learning should help with reducing overfitting, the large gap between validation

and test performance metrics hints that our models are overfitting the validation set,

and cautions for more rigorous model selection approaches in such studies.

Similar to other ecological sampling settings with aerial imagery [19, 67], empty

patches predominate in my test set, outnumbering those with seals by a factor of 500

– which is aggravated by my use of overlapping patches. Though the pervasiveness

of false negatives and false positives in my model output calls for adequate statis-

tical treatment before making any inferences about seal populations (e.g., [97, 110]),
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raw model output from SealNet can also serve as an attention map for human ob-

servers, facilitating manual annotation. Besides being immediately applicable to semi-

automated pack-ice seal surveys, lower annotation effort speeds up the acquisition of

training data, which, as indicated by my learning curve (Fig. 2.6b), may boost predic-

tion performance enough to bridge the gap between fully-automated approaches and

manual surveys. When considering the performance of an automated classification

pipeline, it is worth highlighting that there is a comprehensive literature on statistical

methods for dealing with observation errors in wildlife surveying (e.g., [91, 97, 96]),

and the existence of high error rates does not ipso facto preclude unbiased or reliable

population estimates. While the vast majority of high spatial resolution imagery for

the Antarctic is focused on terrestrial areas, there are no technical barriers to repeated

sampling of key marine regions, and the development of a well-structured sampling

regime for pack-ice seals could enable global population estimates on a yearly basis.

Besides exploring hyperparameter space and adding more training samples, pre-

dictive performance could be improved by adding environmental features as addi-

tional inputs to the CNN. This approach, akin to a habitat suitability model, takes

advantage of the fact that all my training and input imagery is georeferenced and may

be coupled with several biologically relevant measurements associated with seal pres-

ence/density in previous studies such as sea ice characteristics, bathymetry, water

temperature and distance to shelf-break [8, 12, 14, 99]. Integrated habitat suitability

and detection models provide a promising path forward and would likely improve

classification accuracy while potentially informing on seal habitat selection and haul

out patterns.
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2.6.2 A path forward for a Southern Ocean pack-ice seal monitoring

program

Past large-scale pack-ice seal surveys, both ship-based (e.g., [41]) and aerial-based

[56], have provided initial clues on pack-ice seal distribution and population sizes.

These estimates, unavoidably, rely on data aggregated from different sampling meth-

ods (e.g., [12, 56]) and from broad and discontinuous time windows (e.g., [1, 41]), or

require an extrapolation for the entire coastline using seal density estimates derived

from a single region [41]. Though mitigated by increasingly sophisticated statistical

treatment, I argue that these limitations, due to the substantial expenditure required

for Antarctic surveys, are inherent properties of sampling method choices. As my pilot

study illustrates, satellite-based surveys, aided by automated detection with CNNs,

can overcome these difficulties and provide large-scale pack-ice seal censuses, using a

single sampling design that can be repeated yearly at spatial scales that cover a rep-

resentative sample of the Antarctic coastline. This paper represents the first step to-

wards a regular, cost-effective, pan-Antarctic seal monitoring program. Apart from

algorithmic improvements and more training data, my pipeline would greatly benefit

from a test set that is paired with concurrent observations by a ground-based observer

or aerial photographs. A comprehensive pack-ice seal census would provide key in-

formation to understand how the SO ecosystem will react to threats such as climate-

change-driven sea ice loss [78] and increasing krill fisheries [100]. An automated tool

to survey pack-ice seals allows us not only to get a better idea about their abundance

and long-term trends but also how their distribution is coupled to environmental fea-

tures (e.g., sea ice conditions) or affected by external drivers (e.g., krill fisheries). This

approach can be easily adapted for counting other large-bodied species visible from

high spatial resolution satellite imagery, and I have provided the code to encourage

other researchers to adapt the pipeline for their needs.
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FIGURE 2.3: Training set scenes. Locations of the 52 WorldView-3 scenes
used on the training set are marked with light-blue squares. Scenes with
spatial overlap were captured at different times. Training set scenes range
from October 2014 to February 2017. The scarcity of offshore scenes in
my training set reflects the preponderance of coastal scenes on available
WV-3 imagery. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.) Antarctic

basemap extracted from Quantarctica (Matsuoka et al., 2018).
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FIGURE 2.4: ealNet architecture. The CNN takes in a patch as input,
generates an occupancy probability and a seal count with peripheral
branches, and reconstructs a heatmap for pixel-wise probability of be-
ing a seal centroid. Predicted seal centroids are determined outside of
the CNN by finding the n largest intensity peaks on a patch, where n is
the regressed seal count for that patch multiplied by a Boolean (0 or 1)
indicating whether the occupancy probability for that patch surpasses a
predefined threshold. Model output is displayed in bold. Satellite im-

agery (upper left) copyright DigitalGlobe, Inc. 2019.
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FIGURE 2.5: (a–e) Satellite imagery representing the test set. Test set
scenes are not included in training or validation sets and serve as a way
to get out-of-sample precision and recall over a range of scenarios that
we are likely to encounter at deployment stages. Scenes a and b have
seals over fast-ice, with low and high densities, respectively. Scenes c
and d have seals over pack ice, with low and high densities, respectively.
Scenes e covers the Antarctic coastline landscape without seals. All test
scenes were obtained between February and March 2017 at the locations
specified in the Antarctic continent thumbnail at the lower right of the
panel. Antarctic basemap extracted from Quantarctica [90]. Satellite im-

agery copyright DigitalGlobe, Inc. 2019.
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FIGURE 2.6: (a) Validation performance: Validation precision and recall
reported here are the highest obtained for 75 training epochs. Predicted
seal centroids are considered true positives if their location is within 5 pix-
els of a manually annotated seal centroid. (b) Learning curve for SealNet:
Top validation f1-score obtained during training epochs is displayed for
SealNet instances trained on increasing large random subsets of my train-
ing set. Training set subsets are generated using a weighted sampler that
ensures a similar class representation regardless of the number of training

samples on a subset.
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FIGURE 2.7: Sample SealNet output. Panels true-positives (light-blue cir-
cles) false negatives (orange arrows) and false positives (orange open cir-
cles), by a double-observer consensus (upper panel) and SealNet (lower
panel). Examples, from left to right, show a case where both SealNet and
the consensus set locate seals faultlessly, a case where SealNet outper-
forms the consensus set, and a case where it underperforms the consen-
sus set. Crops were extracted at a 1:500 scale from the test scenes b, c, and
d, respectively (Fig. 2.5). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Satellite imagery copyright DigitalGlobe, Inc. (2019).
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FIGURE 2.8: (a) CNN performance on different group sizes. Recall values
are extracted by measuring the proportion of ground-truth seal points on
specific-sized haul outs a model can recover. (b) Test group size distribu-
tion. The y-axis shows the proportion of seals across all test scenes that

are located in groups of size x.
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Chapter 3

Fine-Scale Sea Ice Segmentation for

High-Resolution Satellite Imagery with

Weakly-Supervised CNNs

3.1 Abstract

Fine-scale sea ice conditions are key to our efforts to understand and model climate

change. I propose the first deep learning pipeline to extract fine-scale sea ice lay-

ers from high-resolution satellite imagery (Worldview-3). Extracting sea ice from im-

agery is often challenging due to the potentially complex texture of older ice floes (i.e.

floating chunks of sea ice) and surrounding slush ice, making ice floes less distinc-

tive from the surrounding water. I propose a pipeline using a U-Net variant with a

Resnet encoder to retrieve ice floe pixel masks from VHR multispectral satellite im-

agery. Even with a modest-sized hand-labeled training set and the most basic hyper-

parameter choices, my CNN-based approach attains an out-of-sample f1-score of 0.698

– a nearly 60% improvement when compared to a watershed segmentation baseline. I

then supplement my training set with a much larger sample of images weak-labeled

by a watershed segmentation algorithm. To ensure watershed-derived pack-ice masks

were a good representation of the underlying images, I created a synthetic version
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for each weak-labeled image, where areas outside the mask are replaced by open-

water scenery. Adding my synthetic image dataset, obtained at minimal effort when

compared with hand-labeling, further improves the out-of-sample f1-score to 0.734.

Finally, I use an ensemble of four test metrics and evaluated after mosaicing outputs

from entire scenes. This mimics a production setting during model selection, reaching

an out-of-sample f1-score of 0.753. My fully-automated pipeline is capable of detect-

ing, monitoring, and segmenting ice floes at a very fine level of detail, and provides

a roadmap for other use cases where partial results can be obtained with threshold-

based methods but a context-robust segmentation pipeline is desired.

3.2 Introduction

Antarctic sea ice is an exceptionally dynamic habitat that plays an important role in

climate feedback cycles [54, 144] and controls either directly or indirectly the Southern

Ocean food web [5, 39, 135]. While coarse-grained maps of Antarctic sea ice have been

available for several decades [30, 109], and have been critical to safe navigation [119,

95], climate modelling [64] and our understanding of sea ice-dependent predators [89],

current sea ice products are primarily derived from passive microwave sensors op-

erating at 25 km resolution and are therefore too coarse to resolve individual floes.

Moreover, marine predators such as penguins and seals interact with sea ice on an

extremely localized basis, and the characteristics of sea ice that might influence de-

cisions about movement, foraging, or reproduction occur at scales far smaller than

the resolution of typical sea ice imagery products [23, 9, 71]. Sub-meter resolution

satellite imagery is now widely available for the Antarctic and this provides an oppor-

tunity to start mapping sea ice conditions over large spatial scales. The development

and availability of fine-scale sea ice data products will radically expand our capac-

ity to create high-resolution sea ice charts for navigation, link observed fine-scale sea

ice conditions to climate models, and understand the detailed habitat requirements of
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sea ice-dependent predators. Mapping fine-scale sea ice conditions at scale, especially

within the highly-heterogeneous pack-ice zone, will require automated pipelines for

sea ice segmentation.

Sea ice extraction is an active field in remote sensing. Typically, sea ice layers are

extracted from Synthetic Aperture Radar (SAR) and optical sensors of low to medium

resolution (e.g., MODIS, Sentinel-2, Landsat). Traditionally, sea ice was identified us-

ing pixel-based methods that used only the information contained in the spectral pro-

file of each individual pixel to extract sea ice masks [61]. Other approaches explored

the contrast between sea ice and the surrounding water bodies and threshold (e.g. wa-

tershed segmentation) or clustering-based methods (e.g. k-means clustering) to extract

sea ice polygons [154, 155, 65], without the need of labeled datasets. More recently, ma-

chine learning models were trained to identify and predict different sea ice types from

predetermined sets of sea ice polygons and expert-annotated class labels (e.g. [145,

18, 57]). Approaches using low to medium-resolution sensors bring the advantages of

larger spatial and temporal coverage and, in the case of passive microwave and other

non-optical sensors, the capability to extract useful information regardless of cloud

cover and other factors that affect lighting. Although such methods have provided

invaluable information on traits such as average sea ice cover, they are unfit to extract

individual ice floes or fine-grained information on sea ice conditions. In imagery from

very-high-resolution sensors such as Worldview-3, individual ice floes are several pix-

els large, and the classification and delineation of such super-pixel features are highly

challenging for pixel-based solutions. Moreover, the extra detail adds a larger breadth

of features that can hinder the performance of threshold-based methods. Fortunately,

modern computer vision approaches exploiting deep learning (DL) are well suited to

exactly such problems.

The rise of GPU-accelerated DL, marked by the first Imagenet challenge won by

a Convolutional Neural Network (CNN) [116], has made DL affordable, brought the
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field back as a hot research topic, and ultimately lead several ground-breaking im-

provements to the fields of CV and natural language processing (NLP). With the con-

comitant popularization of high-resolution sensors, DL solutions have largely replaced

methods such as Support Vector Machines (SVM) and have already become a staple in

some areas of remote sensing [86]. In contrast to other works that use DL for classify-

ing sea ice at medium resolution (e.g. [18, 57]) and segment out sea ice in ship-borne

images [38, 106], the goal of the present work is extracting precise ice floe masks from

high-resolution imagery. More specifically, I am targeting ice floes only – a daunting

task given a large number of potentially confounding fine-scale structures (e.g. slush,

melt ponds, etc.) that emerge at very-high spatial resolutions. I do so by training

a weakly-supervised CNN that learns from a small set of hand-labeled sea ice masks

and a much larger set of weak annotations obtained with minimal effort using a water-

shed segmentation model. A fully automated pack-ice extraction tool would provide

invaluable data for Antarctic ecology given the large number of ecosystem interactions

mediated by sea ice.

3.3 Materials and Methods

3.3.1 Imagery and data annotation

Our datasets were extracted from a set of 43 multispectral Worldview-3 (WV-3) scenes

(Table 3.1 and Fig. 3.1) covering 730.05 km2 of coastal Antarctic scenery with an on-

nadir resolution of 1.24m/pixel. I include three distinct types of annotation (Table 3.2):

1) pixel-level sea ice masks drawn by hand – my "hand-labeled" training set; 2) pixel-

level sea ice masks extracted with watershed segmentation – my "watershed" train-

ing set; and 3) pixel level sea ice masks extracted with watershed segmentation and

adapted to synthetic sea ice images – my "synthetic" training set. This multi-dataset
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FIGURE 3.1: Training set scenes. Dark squares denote the location of each
of the 36 scenes in my training set. Scene squares are marked with a light
dot whenever I drew annotations by hand for that specific scene. Imagery

copyright DigitalGlobe, Inc. 2021.

design allows us to take advantage of weak labels from watershed segmentation (wa-

tershed and synthetic training sets) during training but still get validation and test

metrics on a set of careful manual annotations. Each scene consisted of the red, green,

and blue bands of the WV-3 multispectral image tiled into 784×784 pixel patches with

a 50% overlap between neighboring patches. I chose to extract patches that are bigger

than my input size to generate a larger breadth of training images by leveraging ran-

dom crops within my data-augmentation pipeline (described in the following section).

Details on each method are supplied in the following sections.
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TABLE 3.1: WorldView-3 imagery. I used a set of 43 multispectral WV-3
images to train, validate and test my ice floe segmentation models. To
reduce GPU memory footprint during training and avoid further modi-
fications to my CNN architectures, all imagery was converted from the
native 8-band multispectral channels to three-channel images by extract-
ing the red, green, and blue bands. Due to lighting limitations inherent to
the poles and to capture the reproductive seasons of Antarctic megafauna,
my imagery was acquired in a period ranging from November 20 to April
7 (summer - early spring) in the years of 2014, 2015, 2016, and 2017. All
the imagery used in the study is cloud-free. Repeated consecutive catalog

IDs indicate different scenes within the same strip.

Catalog ID Lat-Lon Cloud cover Total area Date

1040010005B62F00 -69.3327 158.4884 0.0 263.1 km2 20/Nov/2014
1040010013346700 -76.9427 166.8715 0.0 212.6 km2 26/Nov/2015
10400100156E6500 -63.1618 -54.9593 0.0 268.8 km2 01/Jan/2016
10400100156E6500 -63.8006 -54.959 0.0 202.7 km2 01/Jan/2016
10400100156E6500 -63.2718 -54.959 0.0 265.3 km2 01/Jan/2016
10400100156E6500 -63.599 -54.9589 0.0 259.3 km2 01/Jan/2016
1040010016234E00 -67.256 45.9485 0.0 266.5 km2 02/Jan/2016
1040010016234E00 -67.668 45.9477 0.0 172.8 km2 02/Jan/2016
1040010016234E00 -67.0437 45.9485 0.0 244.6 km2 02/Jan/2016
1040010016234E00 -67.1471 45.9486 0.0 265.0 km2 02/Jan/2016
1040010016234E00 -67.3652 45.9489 0.0 268.2 km2 02/Jan/2016
1040010016234E00 -67.4748 45.9489 0.0 269.9 km2 02/Jan/2016
1040010017265B00 -76.0 -26.6717 0.0 224.5 km2 07/Jan/2016
1040010017A12200 -67.4771 164.6313 0.0 168.7 km2 12/Jan/2016
10400100167EC800 -63.4564 -56.8695 0.0 282.7 km2 17/Jan/2016
10400100167EC800 -63.3475 -56.8686 0.0 281.0 km2 17/Jan/2016
10400100167EC800 -63.6757 -56.8695 0.0 287.3 km2 17/Jan/2016
10400100167EC800 -63.2385 -56.8685 0.0 279.2 km2 17/Jan/2016
10400100178F7100 -63.4235 -54.669 0.0 186.1 km2 21/Jan/2016
104001001762AC00 -66.2365 110.1896 0.0 191.1 km2 21/Jan/2016
10400100175A5600 -66.6168 -68.2485 0.0 122.0 km2 25/Jan/2016
10400100175A5600 -67.575 -68.25 0.0 269.3 km2 25/Jan/2016
104001001747E000 -64.2565 -56.6693 0.0 291.3 km2 26/Jan/2016
104001001777C600 -69.0697 76.7836 0.0 220.4 km2 28/Jan/2016
1040010018447F00 -67.6175 66.5771 0.0 296.5 km2 28/Jan/2016
104001001844A900 -66.5325 92.5386 0.0 208.0 km2 28/Jan/2016
1040010017764300 -74.7749 164.0267 0.0 225.3 km2 29/Jan/2016
1040010017823400 -72.3657 170.2705 0.0 207.9 km2 04/Feb/2016
1040010018694800 -72.0 170.5882 0.0 170.7 km2 04/Feb/2016
10400100196BE200 -65.4111 -64.3911 0.0 274.8 km2 25/Feb/2016
10400100196BE200 -65.4984 -64.3908 0.0 191.9 km2 25/Feb/2016
10400100181F9B00 -66.8013 50.5412 0.0 215.6 km2 27/Feb/2016
1040010018755100 -67.4705 61.0185 0.0 221.4 km2 05/Mar/2016
1040010018046800 -65.938 110.2305 0.0 207.7 km2 07/Mar/2016
1040010019529D00 -77.7016 -47.6769 0.0 183.9 km2 13/Mar/2016
1040010019417700 -76.1377 168.3823 0.0 243.9 km2 15/Mar/2016
104001001A625A00 -70.0097 -1.4187 0.0 163.3 km2 16/Mar/2016
104001001A8FF900 -67.3803 63.9762 0.0 237.1 km2 16/Mar/2016
104001001A27CC00 -64.5113 -57.4442 0.0 264.6 km2 23/Mar/2016
104001001B448400 -69.9403 8.3095 0.0 163.1 km2 25/Mar/2016
104001001A896700 -67.8698 69.7022 0.0 181.1 km2 30/Mar/2016
104001001A6C8C00 -70.5887 -60.5685 0.0 234.1 km2 07/Apr/2016
1040010028CD9C00 -73.2326 -126.7786 0.0 162.3 km2 25/Jan/2017
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TABLE 3.2: Training datasets. Number of scenes and total area covered
by positive (i.e. patches with pack-ice) and negative (i.e. patches with-
out pack-ice) patches within each of my datasets. Image annotations con-
sisted of binary pixel masks that denote whether a pixel in a patch rep-
resents pack-ice. Hand-labeled masks were drawn over 3000×3000 me-
ter crops at strategic locations whereas watershed derived masks were
extracted by running a sliding window over scene regions marked by ir-
regular polygons. Patches with watershed derived masks are used ex-
clusively during training, whereas patches with hand-labeled masks are
split equally between training, validation and test sets. Negative training
patches were shared across all three training sets. To avoid inflation in
my validation metric scores, I set aside a distinct set of negative images

for validation.

Training set Scenes Area + Area -

Hand-labeled[train] 19 20.8 km2 240.9 km2

Hand-labeled[valid] 18 20.2 km2 17.85 km2
Hand-labeled[test] 19 20.4 km2 16.8 km2
Watershed[train] 27 393.1 km2 240.9 km2
Synthetic[train] 27 393.1 km2 240.9 km2

Hand-labeled training set

I employed hand-labeled pixel masks as my main tool to provide out-of-sample per-

formance measurements to segmentation CNNs. My hand-labeled masks were cre-

ated using the following steps: 1) extracting three RGB 3000×3000 pixel crops contain-

ing pack-ice at random, but with no overlap, from five different scenes; 2) opening the

crops in Adobe Photoshop™ and creating a separate channel to store my sea ice mask;

3) using the magic wand and color selection tools to remove darker regions containing

open water from my sea ice mask; and 4) manually filling holes created by darker areas

inside floes. All my manual annotations were performed by a single individual and

included multiple passes over the dataset to guarantee that annotations were as con-

sistent as possible across different scenes. My crops and pixel masks were tiled using

a sliding window approach with a patch size of 784×784 and 50% overlap between

neighboring patches. I further supplemented this dataset by adding hard-negative

patches (i.e. without sea ice) at the same proportion as the following two datasets.
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The final hand-labeled dataset is drawn from 45 hand-labeled RGB crops split equally

between training, validation, and test sets.

Watershed training set

I used a watershed segmentation algorithm as an inexpensive strategy to generate

a large number of weak ground-truth masks from raw imagery with sea ice, as fol-

lows: 1) create georeferenced annotation masks by hand-drawing contour polygons

over areas with pack-ice; 2) mask raw imagery and run a sliding window with a patch

size of 784 and 50% overlap between neighboring patches to extract input patches;

3) create an annotation mask for each patch by running watershed segmentation se-

quentially; 4) draw contours for objects in the watershed mask and remove objects

that are deemed too small to be a floe from the watershed mask (total area < 15m2;

and 5) discard images where more than 15% of the total area has missing data or the

watershed mask has a single contour (usually a contrast aberration around corners).

I added extra patches in an equivalent manner using georeferenced polygons drawn

in representative areas outside of pack ice to serve as hard negatives. The final Wa-

tershed training set contains a total of 6597 patches divided into 4085 pack-ice images

and 2512 hard-negative patches.

Synthetic image training set

I built upon the previous dataset by creating synthetic versions of the imagery where

the input image better matches its watershed mask as follows (Fig. 3.2): 1) taking a

patch with pack-ice; 2) applying recursive watershed segmentation to the patch; 3) us-

ing the output of watershed segmentation to mask out all portions of the patch that did

not contain sea ice; 4) pasting the resulting patch on top of an open water background

patch to create a realistic synthetic image; and 5) removing the areas of greatest overlap

between masked RGB channels from the segmentation mask to further individualize
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FIGURE 3.2: Synthetic image creation. Five examples of my synthetic im-
age creation pipeline extracted from my training set images. My water-
shed segmentation algorithm in step 2 is applied sequentially for a total of
three times. I fill masked-out areas in step 3 with open water images sam-
pled at random. I find three channel overlaps in step 4 using an adaptive
threshold. Refined masks in step 5 are obtained by subtracting overlap-
ping areas from step 4 from watershed masks in step 2. Imagery copyright

DigitalGlobe, Inc. 2021.

floes in the mask. The final Synthetic dataset has the same number of patches as the

original Watershed dataset.

3.3.2 Segmentation CNNs

Our semantic segmentation experiments use a U-Net architecture variant [115], with

the U-Net encoder branch replaced by a ResNet34 encoder [59](Fig. 3.3). I make this

small modification in the U-Net encoder branch because a ResNet34 encoder gener-

ally outperforms the original encoder in terms of evaluation metrics with standard
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FIGURE 3.3: CNN architecture. My CNN architecture borrows from
the U-Net architecture, with encoder and decoder branches connected
by copy-and-concatenate operations, with the sole difference that the
base U-Net encoder is replaced with a ResNet34 encoder. ResNet blocks
within the encoder consist of a set of convolution operators intertwined
by batch normalization and rectified linear unit (ReLU) operations fol-
lowed by concatenation with the input features (i.e. skip-connection). Af-
ter running through ResNet blocks, features get down-sampled after each
ResNet block with a strided average pooling layer, reducing the height
and width of each channel by a factor of 2. I do not provide numbers for
height and width for input images and CNN blocks in the schematic be-

cause input size is a dynamic parameter in my study design.

datasets (e.g. [116]) and also to facilitate experiments with fine-tuning from a ResNet

classifier. I trained my CNN to create pixel-level binary masks that represent areas of

a patch covered by ice floes. I used the Dice coefficient [34] as my validation metric

for model selection. I kept the best-performing model for each training set for com-

parison against the hand-labeled test dataset to get an out-of-sample measurement of

model performance, boosted by test-time-augmentation [122]. Finally, I took the best-

performing model according to test f1-score and retrained it on all samples from the

synthetic and hand-labeled dataset to be used in production.

3.3.3 CNN training and validation

All my CNN training experiments were run on PyTorch v1.8.0 in Python [107], with

an Adam optimizer [68] and a schedule where the learning rate is reduced by a factor

of 10 whenever validation f1-score fails to improve after three consecutive epochs and

training is interrupted after six epochs without improving validation F1. I searched
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for optimal combinations hyperparameters running over 1000 random search experi-

ments for input size (256, 384 and 512), loss function (see below), data augmentation

(simple vs. complex, see below), and learning rate (log scale, from 1E-3 to 1E-5), using

the greatest batch size allowed by GPU memory (200, 120 and 60 for input sizes 256,

384 and 512, respectively) and validation f1-score as the model selection metric. My

training images are sampled with replacement to match a predefined ratio of negative

to positive images in training batches, which was also explored as a hyperparame-

ter. To explore the benefits of fine-tuning from a pre-trained model [151], I repeated

my hyperparameter search experiments initializing model parameter weights to either

the weights from one of my best-performing models according to validation metrics

(picked at random from the top 100 models) or a CNN trained on binary classification

for the presence of pack-ice in patches. My experiments were run at the Bridges-2 NSF

supercomputer on GPU nodes with 8 Nvidia V-100 GPUs, each with 32GB of GPU

memory. Model weights for my best-performing segmentation models are available

in my GitHub code repository. I grouped my random search experiments with two op-

tions (i.e. data augmentation policy, fine-tuning, and test-time-augmentation), within

12 brackets defined by combinations of input size and training set and treated them as

independent replicates for statistical analyses. More specifically, I extracted the best-

performing model within each of my 12 brackets and tested whether the observed

ratio of best-performing models given parameter values falls within the expectations

of a binomial experiment with 12 trials and 50% probability of success.

3.3.4 Testing

I tested my CNNs using a routine that mimics the functioning of my models in pro-

duction consisting of four steps: 1) use a sliding window approach to tile the input

image into patches with a 50% overlap between neighboring patches, where the size

of each patch matches the required input size of the CNN (i.e. 256, 384 or 512); 2)
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generate predictions for each patch by applying a sigmoid transformation and binary

threshold to the model output; and 3) create a mosaic of the predicted tiles and cal-

culate metric scores by comparing predictions with ground-truth masks. Each of my

CNN models from training was tested with and without test-time-augmentation, us-

ing a temperature-sharpen policy [13] to merge augmented predictions. To get robust

out-of-sample performance estimates, my model selection used a consensus of four

different metrics: 1) mean f1-score averaged across test scenes; 2) mean IoU averaged

across test scenes; 3) f1-score across all pixels in the test set; and 4) average between

the accuracy on background and foreground pixels in the test set. For each candidate

model, I ran this pipeline over a set of 12 carefully labeled 3000×3000 meter areas with

pack-ice and seven 3000×3000 meter areas of Antarctic scenery without pack-ice.

3.3.5 Loss functions

I experimented with a variety of loss functions that focus on different aspects of the

segmentation output, largely borrowing from a recent comprehensive survey on loss

functions for semantic segmentation CNNs [66]. Since the choice of loss function can

have dramatic, non-obvious impacts on model performance [66], I chose to start with

a broad set of candidate loss functions and use validation f1-scores during the hy-

perparameter search to find the ideal candidate for my use case. I initially used two

pixel-based approaches, namely binary cross-entropy and Focal Loss [80]. While the

former represents the simplest available loss function and is ideal for a baseline, the

latter is often used for imbalanced datasets, as it puts more weight on pixels that are

harder to classify. I then tested a number of region-based approaches that build upon

the Dice coefficient [34] as they tend to preserve the shape of superpixel structures

better than pixel-based solutions. In the context of semantic segmentation models, the

Dice coefficient, a harmonic mean of precision and recall, is turned into a loss function

by subtracting the Dice coefficient for a patch from 1, so that models can improve by
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minimizing it through gradient descent optimization. Besides the original Dice Loss,

I used three variants: 1) Log-Cosh Dice Loss [66], an attempt to improve the original

Dice Loss by smoothing out its loss function; 2) Dice Perimeter loss [40], a variation of

Dice Loss that uses the difference in the total perimeter of the predicted and ground

truth masks as a regularization factor to the loss function; and 3) a weighted mixture

of Dice and Focal Loss. Whenever available, I used native PyTorch implementations

of my loss functions.

3.3.6 Data augmentation

To add more breadth to my training sets, and consequently make my models more

robust to changes in scale, rotation, illumination, and position, I employed data aug-

mentation pipelines tailored for satellite imagery, taking full advantage of rotations

and random crops that would otherwise be unsuitable for non-aerial images. I use

two data augmentation strategies: 1) a simple approach with random crops, vertical

and horizontal flips, random shifts in position, random re-scaling, random 90-degree

rotations (i.e., 90, 180, or 270 degrees), and brightness and contrast shifts; and 2) a more

complex approach using the same transforms listed above plus noise reduction, RGB

shifts, and random distortion effects. My data augmentation pipelines are applied

continuously during training and use transform implementations from the Albumen-

tations package [24]. The exact specifications for each can be found in my GitHub code

repository.

3.3.7 Model baselines

I evaluated my sea ice extraction models using four baselines of increasing complexity:

1) watershed: extract directly with watershed segmentation (identical implementation

from my watershed training set extraction); 2) basic U-Net: use the best-performing

U-Net constrained to the simplest settings in my hyperparameter search (hand-labeled
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training set, binary cross-entropy loss, simple augmentation pipeline, no model fine-

tuning, no test-time augmentation, validation f1-score as model selection); 3) U-Net

best validation: the best-performing U-Net from the hyperparameter search according

to validation f1-scores; and 4) U-Net best test: the best-performing U-Net according to

an ensemble of four different metrics measured after mosaicing model output. I ob-

tained an out-of-sample performance estimate for each baseline as described in section

2.4.

3.4 Results

3.4.1 Model performance

Our first baseline, applying watershed segmentation to input images, attains a 0.464

f1-score in the test set after output mosaicing (Table 3.3). The simplest possible CNN-

based model improves performance by >50%, reaching a test f1-score of 0.698. Adding

more complex features and the synthetic dataset to the hyperparameter search further

improves out-sample performance by 5%, reaching a test f1-score of 0.734. My final

model, obtained by adopting a more elaborate model selection approach that mimics

production settings, provides another modest improvement in terms of test f1-score,

reaching 0.753.

3.4.2 Hyperparameter search

Our hyperparameter search experiments (Fig. 3.5) unanimously favored the use of

test-time-augmentation (ρ = 0.00024, best performance in 12 out of 12 brackets), and

showed slight, non-significant support for the use of my simple data augmentation

pipeline over the complex one (ρ = 0.07299, best performance in 9 out of 12 brackets)

and training from scratch instead of fine-tuning (ρ = 0.07299, best performance in 9
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TABLE 3.3: Model performance. I show the f1-scores on validation and
test sets of the best-performing model iteration across brackets input size
and dataset, as well as the number of random search experiments, runs
within each bracket trained from randomly initialized parameter weights
(i.e., from scratch) or fine-tuning from a previous model, respectively. Val-
idation f1-scores are obtained by averaging out the f1-scores from indi-
vidual patches in the validation set. Test f1-scores reported are averages
across the f1-score for all 19 test scenes obtained after output patches were
merged into a mosaic, more akin to production settings, with the standard
error as a measurement of spread. Test f1-scores from the same watershed
segmentation approach I used to extract weakly-labeled images are pro-
vided as a baseline for U-Net-based models. My watershed segmentation
model is implemented in Python using the numpy and OpenCV libraries
and my U-Net CNN is implemented in PyTorch by swapping the original

U-Net down-sampling layer for a ResNet34 encoder.

Model Patch size Dataset F1 (val) F1 (test) N

U-Net 256 hand 0.842 0.727 ± 0.132 34, 12
U-Net 256 hand + synthetic 0.824 0.713 ± 0.087 36, 16
U-Net 256 hand + watershed 0.855 0.628 ± 0.174 34, 12
U-Net 256 synthetic 0.732 0.739 ± 0.126 42, 17
Watershed 256 - - 0.464 ± 0.139 -
U-Net 384 hand 0.736 0.747 ± 0.142 31, 16
U-Net 384 hand + synthetic 0.822 0.713 ± 0.162 41, 19
U-Net 384 hand + watershed 0.848 0.633 ± 0.180 33, 10
U-Net 384 synthetic 0.769 0.727 ± 0.135 46, 21
Watershed 384 - - 0.460 ± 0.141 -
U-Net 512 hand 0.776 0.733 ± 0.158 40, 13
U-Net 512 hand + synthetic 0.850 0.753 ± 0.113 32, 14
U-Net 384 hand + watershed 0.839 0.696 ± 0.176 39, 14
U-Net 512 synthetic 0.830 0.734 ± 0.133 37, 14
Watershed 512 - - 0.459 ± 0.136 -
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out of 12 brackets). In general, the f1-score differences between different parameter

choices were much smaller when fine-tuning from previous models.

3.4.3 Qualitative model output

Model predictions obtained with watershed segmentation produce several false-positive

and false-negative errors in scenes with pack-ice and produce an abundance of false-

positive errors in background scenes (Fig. 3.5). My most basic CNN model has a

greater recall than the previous baseline, at the cost of a lower precision in the third

pack-ice scene, and successfully discards some icebergs and rocks from the predicted

mask. Though it incurs substantially fewer false-positive errors than the previous

baseline in background scenes, it does generate artifacts around the edges. The best

model according to validation metrics produces sharp prediction masks inside pack-

ice scenes but largely fails to discard icebergs and rocks from the predicted mask.

Though this baseline achieves a higher overall f1-score than the previous one, it largely

fails to ignore background imagery, incurring substantial false-positive errors. My fi-

nal model, picked by my enhanced model selection scheme, has a lower recall but

higher precision in pack-ice scenes when compared to the previous baseline and con-

sistently discards icebergs and rocks from the predicted mask. Unlike the other three

baselines, my final model generates few to no false positives when predicting outside

of pack-ice (7 out of 7 background scenes had fewer than 0.5% false positives).

3.5 Discussion

3.5.1 Model out-of-sample performance

Even with a modest-sized hand-labeled training set, my CNN-based method largely

outperforms threshold-based methods, represented here by a sequential watershed

segmentation algorithm, quantitatively (Table 3.3) and qualitatively (Fig. 3.5). Even
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after running a comprehensive hyperparameter search (Fig. 3.4), experiments using

direct outputs of watershed segmentation as weak-labels (i.e. training set = hand +

watershed) underperformed those with hand-labeled data only (Table 3.3). This result

is expected if I take into account situations where there is lighter and darker pack-ice

within the same patch, in which case the watershed algorithm will only retrieve the

lighter-colored floes (e.g. Fig. 3.2, patches 2 and 4), creating misleading annotation

masks. My synthetic image approach (Fig. 3.2), however, adds valuable supervision

to my semantic segmentation CNNs, improving test f1-score by a considerable mar-

gin (Table 3.3), but incurs more false-positive errors when predicting outside of pack-

ice (Fig. 3.5). With evaluation metrics to further penalize poor performance in back-

ground scenes and provide a better representation of true out-of-sample performance,

I improved my test f1-score even further (Table 3.3), reaching over 0.75 in my com-

prehensive hand-labeled test set. Besides generating better prediction masks for ice

floes, CNN-based methods are particularly advantageous because they are able to un-

derstand context, and thus produce considerably fewer false positives than threshold-

based methods in at least three scenarios: 1) outside of pack-ice (Fig. 3.5, panels d

and e); 2) in coastal areas; and 3) when icebergs are abundant. However, we need to

exercise caution given the limited breadth of my test set. Thus, it would be beneficial

to run qualitative and quantitative tests on a more representative set of randomized

out-of-sample input images to rule out accidental good results from overfitting to the

validation set during hyperparameter search studies and model selection. Addition-

ally, introducing stronger regularization practices like one of the many approaches

suggested in a recent review by Santos and Papa [120]. As one of my main goals

was to evaluate CNNs as sea ice extraction tools, I did no post-processing on the out-

put. There are several post-processing steps developed to improve the output from

threshold-based or clustering-based methods that could also be beneficial if applied

to my CNN-based pipeline (e.g. [155, 154]), especially with obtaining better ice floe

boundaries when floes are tied together [156].
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3.5.2 Hyperparameter search

Given the vast room for design choices with model architecture, loss functions, data

augmentation routines, and training schedules and recent breakthroughs in GPU-

accelerated parallel computing, the hyperparameter search has become a key step

in developing ML pipelines and an active research field (e.g. [79, 4]). To allow an

adequate exploration of design choices in a feasible time frame, my hyperparame-

ter search (Fig. 3.4) focused on experimenting with input size, data augmentation

routines, choice of loss function, choice of training set, ratio of negative to positive

samples on training batches, and whether to fine-tune from a previous model. Sur-

prisingly, with a few exceptions such as the underperforming LogCosh loss function

[66] and the success of my mixture of Focal Loss and Dice Loss, there were no signif-

icant effects from my design choices in terms of validation f1-score (Fig. 3.4, middle

panel in the lower part of the figure). Some settings, in particular data augmentation,

would merit more experimentation, both in terms of further exploring the transfor-

mations adopted in this study by experimenting with their hyperparameters and by

experimenting with novel transformations (e.g. [27, 49]). Another promising direction

would be testing larger input sizes, as there seems to be an increasing trend in the me-

dian validation f1-score as I increase input size (Fig. 3.4, left panel in the upper part of

the figure). I did not pursue that, however, because that would drastically reduce the

size of my training batches since increasing input size has a quadratic effect on GPU

memory usage. One design aspect that I did not touch in the present work and is par-

ticularly of interest to DL-based remote sensing applications is taking full advantage

of multispectral bands. Apart from having a similar effect to GPU memory utiliza-

tion as adding larger input sizes, taking 8-band images as inputs to my CNN model

would require a series of modifications to the CNN architecture, making it less prefer-

able than other important design choices included in my hyperparameter search when

taking into account developer time allocation and computing resource utilization.
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3.5.3 Fine-tuning experiments

Fine-tuning a model from previous model weights [151] obtained from training with

a large, general-purpose dataset like the Imagenet challenge dataset [116] has become

a staple when training computer vision CNNs. Such approaches are grounded on

the generality of low-level structures like edges and simple shapes across applications

and often focus on re-training only the last few layers in the CNN [140] that incorpo-

rate high-level structures. Fine-tuning is especially useful when there is a scarcity of

labeled data. Existing model weights, however, are largely based on natural images

from a frontal angle, hindering their usability for aerial or satellite imagery-based com-

puter vision solutions, where the camera is always at an approximately 90°angle and

the scale at which objects are presented is more or less fixed. Alternatively, fine-tuning

for semantic segmentation models can be achieved by using patch-level labels to train

a classifier model and swapping the weights from the original model backbone by the

classifier parameter weights. Another approach is to fine-tune from a model trained at

a different input size, aiming to be more scale-invariant. I experimented with both ap-

proaches and failed to obtain any improvement when fine-tuning from a classification

model while obtaining some sparse improvements when fine-tuning from previous

semantic segmentation models (best-performing models in 3 out of 12 of my hyper-

parameter brackets used fine-tuning from previous models). Interestingly, the trend

line for the effect of learning rate in validation f1-scores changes sign for fine-tuning

experiments (Fig. 3.4), potentially meaning that high learning rates could be breaking

low-level feature representations from loaded model parameter weights. Since I de-

creased my learning rate during training whenever validation performance reached

a plateau, results on the latter could have arisen by allowing the model to get out of

local minima, similar to a warm-restart learning rate scheduling policy [83].
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3.5.4 Conclusion

Though sea ice models at course resolution following the plastic continuum approach

[33] can generate sensible predictions of several key features (e.g. sea ice thickness, sea

ice cover) and will remain useful for climate modeling [15], their assumptions do not

hold at finer-scale [32]. The added granularity provided by my solution allows better

treatment of important phenomena such as the formation of fractures and leads which

can substantially alter the structure of sea ice as it allows more short-wavelength ab-

sorption by the ocean [47]. Additionally, since tasked high-resolution satellite imagery

(e.g. WV-3) can be retrieved at specified locations within hours, my approach can en-

hance sea ice detection for shipping and logistics with a broader range of action than

ship-based camera approaches (e.g. [106, 38]. Because of its reliability outside of pack-

ice areas (e.g. Fig. 3.5), my pipeline is capable not only of producing sharp ice floe

segmentation masks but detecting the presence of floes in VHR imagery. My fully

automated, context-robust approach allows us to leverage modern GPUs to monitor

fine-scale sea ice conditions at a continental level. Finally, my semantic-segmentation

approach could be expanded to segment and classify different fine structures in the

Antarctic and Arctic landscapes provided we have plenty of labeled images at a pass-

able quality standard.
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FIGURE 3.4: Hyperparameter tuning experiments. Validation f1-scores
of 623 random search experiments across six different hyperparameters.
I test the influence of input size, training set choice, data augmentation
routine, ratio of negative to positive images within mini-batches, choice
of loss function and learning rate on model performance, measured as the
f1-score in the validation set. My training sets consist of combinations of
a small set of hand-labeled images ("manual"), a larger set of images an-
notated using a watershed segmentation algorithm ("watershed"), and a
set of synthetic input images created by modifying images from the previ-
ous set to be more consistent with their watershed-derived masks ("syn-
thetic"). For loss functions, I tested binary cross-entropy loss (BCE), Focal
Loss, three variants of Dice Loss, and a weighted mixture of Dice and Fo-
cal Losses. For each experiment, I split my runs between models trained
from scratch and models that fine-tuned from a previous experiment, in
which case initial parameter weights would be drawn from one of the top
100 models trained from scratch, selected at random. All my fine-tuning
experiments were trained with manual labels, as the annotation masks
within are closer to the output than I would wish during inference. The
learning rate scatter plot shows each experiment as a dot and trend lines
for models trained from scratch (continuous line) and fine-tuned models

(dashed line).
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FIGURE 3.5: Output visualization. Model output at test scenes from four
different sea ice extraction models left to right: watershed segmentation,
a basic U-Net, the best U-Net according to validation metrics, and the best
U-Net according to test metrics. Test scenes are 3000×3000 meter WV-3
multispectral scenes from the Antarctic coastline tiled with a 50% overlap
at the input size required by each model. True positives, false positives,
and false negatives are shown in transparent green, purple, and pink, re-
spectively. My final model generates few if any false-positive errors in
land and fast-ice imagery consistently avoids rock formations and ice-
bergs, does not create artifacts at tiles edges, and still captures the major-
ity of pack-ice within predicted masks. Imagery copyright DigitalGlobe,

Inc. 2021.
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Chapter 4

SealNet 2.0: Human level

fully-automated pack-ice seal detection

in very-high-resolution satellite

imagery with CNN model ensembles

4.1 Abstract

Pack-ice seals are key indicator species in the Southern Ocean. Their large size (2–4

m) and continent-wide distribution make them ideal candidates for monitoring pro-

grams via very-high-resolution satellite imagery. The sheer volume of imagery re-

quired, however, hampers our ability to rely on manual annotation alone. Here, I

present SealNet 2.0, a fully automated approach to seal detection that couples a sea

ice segmentation model to find potential seal habitats with an ensemble of semantic

segmentation convolutional neural network models for seal detection. My best en-

semble attains 0.806 precision and 0.640 recall on an out-of-sample test dataset, sur-

passing two trained human observers. Built upon the original SealNet, it outperforms

its predecessor by using annotation datasets focused on sea ice only, a comprehensive

hyperparameter study leveraging substantial high-performance computing resources,
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and post-processing through regression head outputs and segmentation head logits at

predicted seal locations. Even with a simplified version of my ensemble model, using

AI predictions as a guide dramatically boosted the precision and recall of two human

experts, showing potential as a training device for novice seal annotators. Like hu-

man observers, the performance of my automated approach deteriorates with terrain

ruggedness, highlighting the need for statistical treatment to draw global population

estimates from AI output.

4.2 Introduction

Here, I present a human-level, fully automated solution to detect pack-ice seals in

VHR imagery, built upon my previous proof-of-concept study [50]. My pipeline works

by pre-processing Antarctic coastline VHR imagery through a sea ice segmentation

model [51] that narrows down candidate imagery to scenes with relevant sea ice sub-

strate. These selected scenes are scanned for seals using an ensemble of CNN mod-

els and ultimately converted to a database of geolocated predicted seals. Models in

my pipeline were trained on a large annotated dataset obtained and curated over

the course of five years. This extensive dataset and a massive deployment of GPU

resources allowed us to train, validate, and test a wide range of different model so-

lutions. Using annotations from an experienced observer as the basis for comparison,

my automated approach outperforms two human observers with >100 h of experience

when faced with novel VHR imagery randomly sampled from the existing imagery

collection.
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4.3 Materials and Methods

Our seal detection pipeline employs an ensemble of CNN models to derive georef-

erenced seal locations from very-high-resolution satellite imagery (Figure 4.1). De-

tailed information on my imagery datasets, CNN model training, and ensembling

techniques can be found in the sections below.

4.3.1 Imagery and data annotation

For training, validation, model selection, model ensembling, and out-of-sample per-

formance estimation, I employed three different annotated datasets (Figure 4.2): a

training/validation set, an expert-selected test set, and a randomly selected test set.

All three datasets comprised panchromatic Worldview-3 high-resolution satellite im-

ages (each one referred to as a ‘scene’) from the Antarctic coastline with an on-nadir

resolution of 0.31 m/pixel. The annotation process consisted of manually browsing

through Antarctic coastline imagery at a scale at which individual seals are detectable;

at the centroid of each putative seal found, a geolocated point was added to a GIS (ge-

ographic information system) spatial point database (i.e., ESRI ® shapefile). I used a

double-observer approach to create a consensus test dataset for out-of-sample perfor-

mance estimation and model selection. The training/validation and test datasets used

in this study were extracted from a set of 38 panchromatic scenes covering 8719.82

km2. I selected training and test scenes that would represent a comprehensive range

of environmental and sensor conditions, including images captured over a range of

off-nadir angles, lighting conditions, and cloud covers. My training/validation and

test sets represent a significant expansion and update of the datasets used in [50]. In

addition to eliminating any putative seals that were re-classified on further consider-

ation, I annotated several new scenes for training and validation. I also changed my
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hard-negative sampling strategy from extracting crops at polygons that marked loca-

tions without seals to extracting random crops that did not overlap with any seal an-

notations in scenes for which I had seal annotations. This new hard-negative sampling

approach reflects the introduction of a sea ice detection step prior to detecting seals,

allowing us to focus on areas with sea ice conditions amenable to seals being hauled

out and thus available for detection. I revised all hard-negative samples to remove

potential false positives. To avoid a potential selection bias, I created an additional

test set (heretofore, the ’random crops test set’) composed of 300 non-overlapping 1

km2 crops from 100 randomly selected WV03 scenes from the Antarctic coastline iden-

tified as having at least 5% sea ice cover by a sea ice segmentation CNN [51]. These

crops were annotated by three different observers (BG, MW, HJL) with varying levels

of experience classifying seals in WV03 imagery.

Training/validation set

I employed non-overlapping training and validation sets to train seal detection CNNs

via gradient descent and run a comprehensive hyperparameter search optimized for

out-of-sample performance. Using non-overlapping groups of seals from scenes in the

training/validation set, I randomly assigned 80% of those groups of seal annotations

to model training and 20% to model validation. Centered on each seal location, I ex-

tracted a 768 × 768 cropped image (i.e., patch) and saved a binary mask for that crop

with ‘1’ on pixels at seal centroids and ‘0’ elsewhere. In addition, I recorded the to-

tal number of seals present in each patch. Since several seals may overlap in a single

training patch, sampling training images at random would result in a bias towards

seals situated within groups of seals (which are easier to detect [50]). To address that,

I designed a weighted sampler that ensures that every seal is equally likely to be rep-

resented during training by down-weighting the probability of sampling individual

seals based on the number of seals found within a radius of 50 m, making solitary

seals and seals in larger groups just as likely to be represented during training. For
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training models that require bounding box annotations (i.e., instance segmentation

and object detection models), I generated 11 × 11 bounding boxes centered on each

seal. For each scene in training/validation sets, I extracted 300 non-overlapping ‘hard-

negative’ 768 × 768 patches by randomly drawing crops from regions without any seal

annotation. To ensure that no false positives existed in negative patches, I manually re-

viewed each negative patch and excluded those potentially containing seals. The final

training/validation set was composed of a total of 8735 patches with seal annotations

and 7750 hard-negative patches.

Expert-selected test set

Our expert-selection test set builds on the approach from my previous study [50] by

adding annotation revisions and replacing the original negative scenes with scenes

that better reflect my new pipeline design with its sea-ice detection pre-processing

step. I employed scene-wide annotations here to provide realistic out-of-sample met-

rics of model predictive performance in production (i.e., when predicting, a detection

model has to go through entire scenes). This test set was used for both CNN model

selection and model ensemble training. Moreover, I used predictions from the 10 top-

performing models in the test scenes along with consensus annotations to train model

ensembles that reclassify each point as a seal or a false positive based on the prediction

from each model for that specific point (see below).

Random crops test set

I used a set of 300 non-overlapping 1 km2 crops from 100 randomly selected WV03

scenes to validate models, optimize model ensembles, and remove selection bias from

out-of-sample performance estimates. The 100 WV03 scenes were sampled at ran-

dom from a set of 1948 scenes obtained by classifying a suite of 14,872 WV03 scenes

through my sea ice segmentation model [51] and eliminating from consideration those
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with <5% (predicted) sea ice cover. Because the vast majority of imagery contains nei-

ther seals nor features such as rocks and/or shadows that could be confounded with

seals, I used my top-10 model ensemble along with a stratified sampling approach to

select the 300 crops for the test set; specifically, I selected 100 crops where all 10 mod-

els predicted one or more seals (seals very likely present), 100 crops where none of the

models predicted any seals (seals very likely absent), and 100 crops where there was

disagreement among the models as to the presence of seals in the scene (seal presence

ambiguous). To create a consensus dataset representing manual (human) annotation,

three observers (BG, MW, and HJL) independently annotated these 300 crops. While

all three observers had considerable experience annotating seals in WV03 imagery,

there was a gradient in the amount of experience (BG > MW > HJL); so, the con-

sensus annotation used to represent ‘truth’ (in the absence of true ground validation,

which is impossible in this scenario) was constructed by having the most experienced

observer (BG) review and edit (as appropriate) the union of all manual annotations

and high-probability CNN predictions. To explore the benefits of AI-guided annota-

tion, each observer had a 50% chance of having access to AI help in the form of en-

semble model predictions with their associated probability. Finally, I used the random

crops test set as a tool to calibrate and evaluate model ensembles on out-of-sample

annotations.

4.3.2 CNN training and validation

CNN-model architecture choice focused on established rather than state-of-the-art

methods to favor explainability, comparison with other studies, and ease of imple-

mentation instead of pure predictive performance. Seal detection CNNs tested in this

study were designed for three different tasks: object detection (i.e., drawing bound-

ing boxes around each object of interest and giving appropriate labels to each bound-

ing box), instance-segmentation (i.e., object detection with segmentation masks inside

58



bounding boxes), and semantic segmentation (i.e., labeling every pixel in the image).

For object detection and instance segmentation, I tested Fast R-CNN [48] and MaskR-

CNN [60], respectively, as implemented in the native torchvision package [87]. In

both cases, I modify the default anchor box sizes for predicted objects to a smaller

size that better matches my ‘truth’ bounding boxes, and, in the case of MaskRCNN, I

swapped the original binary cross-entropy (BCE) criterion from the segmentation loss

for a region-based dice loss (see the section on loss functions below). For semantic seg-

mentation models, I tested both the U-Net architecture [115], as implemented in the

segmentation-models-pytorch package [149] but with an added regression head, and

TransUnet, a transformer-based U-Net-like architecture, as implemented in the origi-

nal paper [26], with the exception of an added regression head. To ensure a fair com-

parison between widely different CNN modalities, I used a unified validation metric

across all models: f1-score between predicted and ‘truth’ seals in the validation set.

Training epochs consisted of going through every training image exactly once, starting

a validation round whenever 1/3 of the training images were processed, with a total

of three validation rounds per training epoch. CNNs were trained with an AdamW

optimizer [82] with a policy that reduces the learning rate by a factor of two whenever

there is no improvement in terms of validation metrics for N consecutive validation

rounds—where ‘N’ is a hyperparameter—and stops training whenever there is no im-

provement for 3 training epochs. Across all settings, I used 512 × 512 input images,

either sampled at random from the training pool or processed sequentially from the

validation pool, grouped into mini-batches with the greatest number of images al-

lowed given constraints from the model architecture and GPU memory availability.

All experiments were performed using pytorch [107] with mixed-precision training

[94] on NVIDIA V100 GPUs with 32 GB of memory from the Bridges-2 supercomputer

[22].
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Data augmentation

To make my models more robust to scale, positioning, illumination, and other poten-

tial confounding factors, I employed a data augmentation pipeline during training, tai-

lored to take full advantage of random crops and rotations given the nature of my im-

agery and dimensions of my objects of interest. I intentionally extracted larger patches

(768 × 768) than my model input size (512 × 512) to keep training images diverse and

non-obvious, and to reduce a potential bias for detecting seals at the center of input

images. Whenever a seal was no longer present in the original patch after applying a

random crop, the count for that patch (based on the ‘truth’ dataset) was adjusted to re-

flect that. For training, I used two data augmentation strategies: (1) a simple approach

with random crops, vertical and horizontal flips, random shifts in position, random

re-scaling, random 90-degree rotations (i.e., 90, 180, or 270 degrees), and brightness

and contrast shifts; (2) a more complex approach using the transforms listed above

plus noise reduction and intensity shifts. My training augmentations are integrated

into the training loop using implementations from the Albumentations package [24].

As an additional step to make predictions more robust to orientation, I apply horizon-

tal flips and 90, 180, and 270-degree rotations to each input image, and average out

predicted masks and counts from all possible combinations.

Loss functions

To train regression heads on semantic segmentation models (i.e., U-Net and Tran-

sUnet), I used Huber loss [63], whereas segmentation heads used either Focal loss

[80], Dice loss [34], or a combination of both. For instance segmentation and object

detection models (i.e., Fast R-CNN and Mask R-CNN), I used the default torchvision

losses for the Region Proposal Network classifier, the Bounding box classifier, and the

Bounding box coordinates regression. I swapped the original Mask R-CNN BCE loss
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for predicted masks with Dice loss since BCE is not suitable when few if any pixels fall

into the positive class.

4.3.3 Hyperparameter search and model selection

I tested a wide range of scenarios to find optimal combinations of hyperparameters

for seal detection models according to f1-score [34] for the expert-selected test set (i.e.,

test f1-score), running a total of 1056 full-length experiments. For all models, I tested

the impact of learning rate, the number of epochs without improvement that would

trigger learning rate reduction, and the ratio of negative to positive images in the data

loader. For semantic segmentation models, I tested the impact of the segmentation

loss function (Dice loss, Focal loss, or mixed Dice and Focal losses), backbone architec-

ture (Resnet34 [59] and EfficentNet [134] variants), relative weight for regression and

segmentation losses, and rate of dropout [132] applied to regression heads. When mea-

suring test f1-score for semantic segmentation models, I tested the potential of using a

threshold on predicted counts to remove false positives. To analyze the relative impact

of each hyperparameter on test f1-score, I fit a CatBoost regressor model using hyper-

parameter values from each trial as dependent variables and f1-score as the outcome

variable and calculated the relative importance of each hyperparameter using Shapley

[123] scores. To save processing time, experiments that underperformed in terms of

the maximum validation f1-score (>0.7 for instance segmentation and >0.5 for object

detection and instance segmentation) were not carried into the testing stage. After an

initial set of 372 experiments with semantic segmentation models, I narrowed down

my hyperparameter pool to speed up convergence. For the latter 251 experiments,

I also used a range of thresholds to explore the impact of using predicted count as a

post-processing step to remove false positives, i.e., for each threshold, predicted points

on patches where the predicted count was smaller than the threshold were discarded

before comparison with ground truth annotations.
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4.3.4 Model ensembling

Our examination of a large suite of models allowed us to deploy a model ensemble

post-processing step. The first step to creating model ensembles was gathering the

correspondent predicted counts and logits for predicted seal locations at the expert-

selected test set and training/validation set using the 10 top-performing models in

terms of test f1-score. Whenever an individual model did not predict a seal at a lo-

cation where other model(s) did predict a seal, cells with model logits and counts for

that location were left as missing values. Predicted counts and logits from each model

were then used as dependent variables to predict whether each point was in fact a

true seal according to the ‘truth’ annotations. I split my random crops test set between

validation and testing to run a hyperparameter search for ensemble models, trained

at binary classification for true-positive vs. false-positive seals, ranging from simpler

linear models (i.e., logistic regression and ElasticNet [158]) to more intricate tree-based

models (i.e., random forest, CatBoost [37], and XGBoost [28]). Though the training and

validation sets are already captured by individual models, I added the potential usage

of these annotations to train model ensembles as a hyperparameter. I ran 50 inde-

pendent hyperparameter search studies with 1500 experiments each. An experiment

in my hyperparameter search consisted of sampling a combination of hyperparame-

ter values from posteriors, training an ensemble model using those hyperparameter

values, and updating posteriors according to f1-score in the validation portion of the

random crops test set. To measure the contribution of each individual model to en-

semble predictions, I used relative feature importance for logits and predicted counts

from each model, in the form of feature weights for linear models and Shapley scores

for tree-based models. I used a Bayesian optimization routine [126], implemented in

the optuna package [3], with multivariate normal priors for hyperparameters to find

the best-performing ensemble model, using the f1-score of the validation half of the
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random crops test set as my metric. The full range of hyperparameter choices for en-

semble models can be found in the ’s code repository.

4.3.5 Evaluation

During all training experiments, my validation metric is the instance-level (i.e., indi-

vidual seal centroids) f1-score. I measured this metric directly for model ensemble pre-

dictions; however, for CNN outputs, I need to match each predicted seal with consen-

sus annotations. Because different annotators may identify the seal centroid in slightly

different locations, and given expected seal dimensions of roughly 2 m, I used a toler-

ance of 1.5 m to declare two seals a match. For semantic segmentation models, I did so

by applying a sigmoid transform followed by a binary thresholding step, leaving us

with seal mask polygons. I then extracted the centroid of each polygon and looked for

a match with the centroids of the consensus dataset. For instance segmentation and

object detection models, however, I simply extracted the centroid from each predicted

bounding box for comparison with consensus centroids. I evaluated the out-of-sample

performance of model ensemble predictions, the best individual performing models,

the original SealNet model [50], and human observers against my random crops test

set consensus annotations. Since model ensembles use the validation portion of the

random crops test set for model selection, all models and model ensembles were eval-

uated on the test portion of the random crops dataset to ensure a fair comparison. For

all evaluation steps, model predictions on land were masked out using a sea ice mask

derived from the Antarctic Digital Database (ADD) high-resolution coastline polygons

available on the Quantarctica project [90]. To evaluate the consistency of output model

probabilities, I measured the correlation between the sum of logits around predicted

seal centroids and their corresponding ‘truth’ label. Similarly, I measured the same

correlation for ensemble models using model-derived logits and their corresponding

‘truth’ labels.
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4.4 Results

Semantic segmentation models largely outperformed object detection and instance

segmentation models (Figure 4.3) in terms of test f1-score (0.39 ± 0.08, 0.04 ± 0.02,

and 0.04 ± 0.02, respectively), attaining a top test f1-score of 0.58. My initial set of ex-

periments with semantic segmentation models (Figure 4.4, marked in orange) showed

that test-time-augmentation is beneficial in terms of test f1-score, and that mid-range

backbone architectures in terms of complexity (i.e., EfficientNet-b0, b1, and b2) had a

slight edge over the extremes (i.e., ResNet34 and EfficientNet-b3); thus, I turned test-

time-augmentation on by default and focused on mid-range backbone architectures

for the later part of hyperparameter search experiments. First phase results also hinted

that my ranges for the ratio of negative to positive images in training batches, learn-

ing rate, regression head weight, regression head dropout, and learning rate scheduler

patience (Figure 4.4, marked in orange) could be adjusted to speed up convergence on

better-performing models. Though there was a slight edge for simple augmentations

over complex augmentations and random sampling over weighted group sampling,

I opted to keep both options for later experiments. Even with fewer iterations, final

experiments (Figure 4.4, marked in teal) largely outperformed initial ones in terms of

test f1-score (0.35 ± 0.09 vs. 0.26 ± 0.13). Using a threshold on predicted counts as

post-processing to remove false positives showed an average increase of 0.04 ± 0.05

in terms of test f1-score. Applying a threshold based on predicted counts as a post-

processing step dramatically changed the distribution of test f1-scores (Figure 4.5);

moreover, virtually all best-performing models had increases in f1-score by applying

post-processing via the predicted count threshold.

The best-performing study for ensemble models achieved an f1-score of 0.69 in the

validation portion of the random crops tests set (Table 4.1). The correlation between

model logits and ‘truth’ labels was consistently higher for ensemble models when
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compared with individual CNN models (Table 4.1). The vast majority of hyperpa-

rameter search studies (42 out of 50, binomial p-value: <0.001) converged on XGBoost

tree ensembles as their model of choice, with varying internal settings. The single best-

performing study and 2 out of the 10 best-performing studies, however, converged on

CatBoost tree ensemble as their model of choice. All independent studies kept CNN

model predictions from the validation set as training data and dropped those for the

training set. Shapley values for feature importance on the best-performing models in

independent studies (Figure 4.6) heavily favored features from the best-performing

CNN in terms of f1-score in the random crops test set (CNN 3) and features regarding

patch-level predicted counts, followed closely by model logits.

4.5 Discussion

Our best-fitting CNN ensembles (Figure 4.1) attain an f1-score of 0.71 on a randomly-

sampled dataset, with double-observer coverage and no exposure during training or

validation, outperforming two human observers with >100 h of experience and ac-

cess to annotations from both a simpler ensemble (Table 4.1) and the previous SealNet

CNN pipeline [50]. The improvement in predictive performance stems from three

primary factors: (1) a larger and more carefully curated training dataset that focused

on scenes with sea ice (Figure 4.2); (2) a comprehensive hyperparameter search study

(Figures 4.2 and 4.4), only feasible in a multi-GPU setting; and (3) a new method-

ology using binary thresholding and regression counts followed by a model ensem-

ble post-processing step. My SealNet 1.0 classifier used the regression output to dic-

tate how many logit hotspots would be extracted from predicted segmentation masks

[50]. Here, I use regression outputs as a post-processing step for segmentation masks,

which removes many false positives and leads to an improved f1-score (Figure 4.5).

This SealNet 2.0 approach is also preferable because it relies solely on pixel-level, cen-

troid mask annotations for prediction, which hinge upon stronger supervision signals
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TABLE 4.1: Out of sample performance for human observers (with and
without the help of AI output), individual CNN models, and model en-
sembles measured at the random crops tests set. AI help is provided
through the output of a simple ensemble model (i.e., an ElasticNet clas-
sifier, ‘ensemble naive’), with a color gradient based on model certainty.
Because whether an observer will have access to AI help is assigned in-
dependently at random, human observers had different sets of imagery
processed with the aid of AI output. U-Nets 1–5 are ordered according to
their ranking based on f1-score in the expert-selected test set. SealNet 1.0
predictions were obtained with the original SealNet. Similarly, ensemble
models 1–5 are numbered in descending order of f1-score on the valida-
tion portion of the random crops test set. I include the correlation between

model logits and ‘truth’ labels as a measurement of consistency.

Observer/Model Precision Recall f1 AI help Architecture Logit correlation

HJL 0.35 0.56 0.43 No - -
HJL 0.58 0.69 0.63 Yes - -
MW 0.50 0.63 0.56 No - -
MW 0.55 0.69 0.61 Yes - -
CNN 1 0.60 0.63 0.62 - UnetEfficientNet-b1 0.54
CNN 2 0.45 0.67 0.54 - UnetEfficientNet-b1 0.33
CNN 3 0.71 0.67 0.69 - UnetEfficientNet-b1 0.60
CNN 4 0.44 0.67 0.53 - UnetEfficientNet-b1 0.36
CNN 5 0.68 0.53 0.60 - UnetEfficientNet-b0 0.53
Sealnet 1.0 0.07 0.02 0.03 - SealNet 0.07
ensemble 1 0.80 0.64 0.71 - CatBoost 0.69
ensemble 2 0.74 0.67 0.70 - XGBoost 0.67
ensemble 3 0.64 0.70 0.67 - CatBoost 0.67
ensemble 4 0.73 0.67 0.70 - XGBoost 0.68
ensemble 5 0.73 0.66 0.70 - XGBoost 0.67
ensemble naive 0.59 0.69 0.64 - ElasticNet 0.60

during training when compared with patch-level ‘true’ counts.

Surprisingly, though the problem at hand theoretically aligns better with instance

segmentation/object detection frameworks, my experiments with MaskRCNN [60]

and Fast R-CNN [48] showed lackluster results (Figure 4.3) when compared with U-

Nets [115]—a considerably simpler semantic segmentation approach. The extremely

poor precision scores obtained with these methods could derive from limitations for

training without foreground objects, creating a bias for over-predicting seals. With my

U-Net-based approach, I am not only able to train using background-only patches,
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but I can also find optimal ratios of patches with and without foreground objects to

maximize the balance between precision and recall through a hyperparameter search

(Figure 4.4). This capability could give an edge to U-Net-based and other semantic

segmentation approaches in ‘needle-in-a-haystack’ problems, which are ubiquitous in

object detection applications for remote sensing imagery (e.g., [148, 17, 67]). The im-

portance of showing negative examples during training in this kind of setting is sup-

ported by the relatively high negative-to-positive ratio found in my best-performing

models (Figure 4.4, panel d).

Our top-10 individual CNN models, surprisingly, have a slightly lower out-of-

sample recall than the global average for phase 2 experiments (0.54 vs. 0.55); however,

on average, they are able to attain dramatically higher precision (0.52 vs. 0.33). This

emphasis on avoiding false positives is also present when we look at the extremely

high correlation between out-of-sample precision and f1-score (r = 0.93) and the strong

negative correlation between out-of-sample recall and f1-score (r = −0.43). The rela-

tively low correlation between f1-scores on the expert-selected test set performance

and the random crops test set (r = 0.49)—and the dramatic performance decrease from

SealNet 1.0 [50] on my more diverse test set Table 4.1—illustrates the importance of de-

signing comprehensive test suites and cautions against over-relying on performance

estimates on limited test sets. My random crops tests set was specifically designed

to minimize the risk of over-relying on validation/model selection metrics for out-of-

sample performance estimates — individual models that overfit to smaller datasets

such as my validation set or expert-selected test set were very unlikely to attain good

metrics by chance on a diverse, randomly-sampled, set of test images.

Having access to AI help in the form of output from a simple ensemble model leads

to a substantial improvement in the f1-score of human observers, improving precision

without sacrificing recall. Though I am not able to draw statistical insights given my

limited observer pool, my results suggest that human supervision could be used as

quality control for AI output, as in most human-in-the-loop AI approaches (HITL,
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[153, 20]), and may also be used to guide inexperienced observers on challenging de-

tection/classification tasks such as ours.

Though my ensemble models consistently outperformed individual CNN mod-

els (Table 4.1), I found the performance boost to be too small to justify the added

computational cost of running imagery through ensembles when compared with the

best-performing individual CNN (CNN 3, f1-score 0.69 vs. ensemble 1, f1-score 0.71).

This similarity in performance is not surprising given the pronounced impact of fea-

tures coming from CNN 3 on the best-performing ensembles (Figure 4.6), with minor

contributions from a few other CNN models. Moreover, though I had a diverse set

of hyperparameters within my 10 best-performing models, they hinged on the same

datasets and model architecture (U-Net), which may have contributed to the high re-

dundancy in including features from multiple CNNs. In contrast, several successful

cases of applying ensemble models to CV rely on merging widely different individual

components (e.g., [105, 111]). On the other hand, ensemble models consistently out-

performed individual CNNs in terms of the correlation between model logits and true

labels (Table 4.1), which makes them more desirable as an AI-guided annotation tool

and could translate to a lower bias on novel input imagery.

While my approach performs extremely well in simple terrain, with large groups of

seals, it does encounter difficulties with rough terrain and single seals (Figure 4.7). No-

tably, these settings also tend to be the most challenging for human observers, shown

by the high correlation between AI and observer errors. These difficulties are unlikely

to be surmounted directly by improvements in AI because I cannot reliably annotate

ground-truth datasets in these settings. Although identifying the portions of VHR

scenes where seals, if present, could be detected is a tractable problem for modern

CV models, estimating seal densities in areas where they cannot be detected is a non-

trivial problem and merits further investigation.

In addition to high out-of-sample performance (Table 4.1), when compared with
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other candidate sampling methods for surveying pack-ice seals (i.e., fixed-wing air-

planes, helicopters, UAVs, and human expert-based VHR surveys), AI-based approaches

showed an operational cost comparable to that of the cheapest option available (helicopter-

based flight transect surveys) [53], even taking into account the considerable cost

of purchasing commercial VHR imagery. Cost-efficiency aside, GPU-accelerated AI-

based approaches generate orders of magnitude fewer emissions than any other sur-

veying method mentioned above [53]. The success of citizen science campaigns such

as SOS [76], however, show the potential to utilize regular citizen science surveys as

a validation method for fully automated pack-ice seal detection pipelines, especially

given the difficulty of covering every potential real-world scenario during model eval-

uation.

Our results show compelling evidence for the immediate applicability of CNN-

based, fully automated approaches for pack-ice seal surveys in VHR imagery. More-

over, they highlight the importance of comprehensive hyperparameter search studies

and diverse training and evaluation datasets when employing AI methods to address

complex tasks such as Antarctic pack-seal annotation in VHR imagery. With the ad-

dition of a pre-processing step to select VHR scenes where seals, if present, could be

found and regular random checks by human observers for quality control, my ap-

proach with CNN ensembles is capable of delivering reliable, continental-scale puta-

tive Antarctic pack-ice seal locations.
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FIGURE 4.1: Simplified diagram for SealNet 2.0 showing the training of
individual CNN models, model hyperparameter search, and model en-
sembling. Boxes colored in light-blue denote models, orange boxes de-
note datasets, and gray boxes denote model output. Thick black lines
from datasets to models indicate model training. Dashed vertical lines in-
dicate model selection steps. The best individual CNN models are trained
on seal detection, including centroid segmentation and seal count regres-
sion, using a random search with training and validation, and the f1-score
at the expert-selected test set for model selection. The best ensembling
models are selected via Bayesian optimization, using top-10 CNN model
predictions for the training set, validation set, and the expert-selected test
set as dependent variables for training; true positive vs. false positive as
the response variable; and the f1-score at the validation split from the ran-
dom crops test set as a validation metric. Finally, I use the test portion of
the random crops test set to estimate the out-of-sample performance of

the best-performing model ensemble.
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output masks are passed through a sigmoid transform and thresholded
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from this plot.
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CatBoost or XGBoost tree-based ensembles trained for classifying false-
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2022.
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Chapter 5

A comprehensive review of pack-ice

seal sampling methods

5.1 Abstract

Antarctic pack-ice seals, through their ecological role as key Antarctic krill predators,

are critical to the Southern Ocean ecosystem. Shifts in sea ice distribution caused by

anthropogenic climate change and krill fisheries threaten their populations. While

initially surveyed by vessel or aircraft transects, very high-resolution remote sensing

imagery has been proposed as a safer and potentially cheaper alternative. The sheer

volume of imagery, however, creates a bottleneck in the availability of expert human

annotators. AI-based, fully-automated surveys offer true scalability and, while imper-

fect, provide consistent annotations, and are unaffected by observer fatigue or other

factors external to the image itself. Much progress has been made, including sea ice

segmentation models that are able to restrict input imagery to potential seal habitat

only, human-level seal detection models, and the HPC middleware required to apply

this efficiently at scale. However, a pan-Antarctic survey using remote sensing comes

with a number of challenges: 1) detecting seals in very-high-resolution imagery is a

daunting task even for trained experts and relies heavily on contextual clues, making

proper statistical treatment pivotal to go from putative seal locations to population
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estimates; 2) variability in lighting, terrain, off-nadir angle, and sea ice conditions im-

pose severe limitations on the reliability of validation and test sets; and 3) limitations

in our understanding of seal haul-out behavior hamper our efforts to estimate the

portion of seals available for detection (i.e. not submerged) at any moment in time.

Here I outline a schematic of a fully-automated pipeline for regular pan-Antarctic seal

surveying and compare it with other available surveying methods in terms of cost,

coverage, and carbon emissions.

5.2 Introduction

The present study highlights recent advances (i.e. CNN-based seal detection models

[50, 52] and sea ice segmentation models [51]) and the remaining obstacles to estab-

lishing a fully-automated pack-ice seal surveying program. Finally, I compare and

contrast fully-automated approaches with citizen science surveys and vessel/aircraft-

based surveys in terms of cost, emissions, and reliability, and discuss the future needs

for a regular pan-Antarctic seal survey program.

5.3 Materials and Methods

5.3.1 Imagery

To scope out imagery requirements for surveying pack-ice seals I queried all VHR im-

agery IDs that followed these 5 criteria: 1) obtained with the Worldview-3 (WV-3) sen-

sor; 2) south of 55 degrees of latitude; 3) at least partially covering the ocean surface;

4) at least partially cloud-free (i.e. cloud-cover < 100%); and 5) off-nadir angle from

sensor < 30 degrees. My initial set of scene IDs was obtained from the Polar Geospatial

Center (PGC) catalog and contains all available VHR commercial imagery up to April

2022. I used a high-resolution ADD-derived sea ice mask from the Quantarctica project

[90] to mask out scenes on land. I used PGC cloud cover estimates to exclude scenes
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FIGURE 5.1: Schematic for the SealNet2.0 fully automated seal detection
pipeline. Starting from the full corpus of suitable WV-3 scenes below 55
degrees of latitude, I follow a 5-step pipeline to obtain seal density es-
timates: a) find scenes that overlap with an ADD-derived ocean mask
(i.e. scenes over the ocean); b) process scenes over the ocean with a sea
ice segmentation CNN to obtain the subset of scenes with relevant seal
habitat; c) process scenes with sea ice with an ensemble of seal detection
CNNs to obtain georeferenced putative seals; d) use a detection model
that uses haul out probability and model uncertainty to draw credible in-
tervals for seal population sizes; e) aggregate by geography and time to
get density estimates. The outside citizen science annotation loop serves
as a guardrail to validate the quality of model output and flag potential

abnormalities.

that are determined to be completely covered by clouds. My threshold for off-nadir

angle ensures that the resolution is sufficiently high to detect potential seals.

5.3.2 Seal detection pipeline

To explore the performance and requirements of a fully-automated seal detection pipeline

I use SealNet2.0 [52] CNN ensembles with a sea ice segmentation CNN [51] as a pre-

processing step that subsets input imagery to those with potential seal habitat 5.1.

Sea ice pre-processing CNN

I utilize a sea ice segmentation CNN from my previous study [51], originally designed

to segment ice floes, to calculate the area covered by ice floes for WV-3 scenes, which

in turn can be used to filter scenes with potential seal habitat. This filtering step is
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employed to mitigate false positive errors outside typical seal habitat and minimize

the computational cost involved with the far heavier seal detection CNN ensembles.

My filtering rule is fit using total floe area and percent floe cover for a set of 3000 WV-

3 scenes labeled according to their potential for seal detection. A scene where seals

could be present – and, if present, would be detectable – receives a label of "1" and

a scene where seals are either extremely unlikely to be present or, if present, could

not be accurately detected (e.g. extreme terrain roughness) would receive a label of

"0". Scene labeling was performed by a single observer, with several hundred hours

of seal annotation experience in VHR imagery, using a graphical interface to inspect

scene thumbnails with overlaid ice floe maps annotated by the sea ice segmentation

CNN, loading the full resolution scene and zooming in when necessary. I optimized

my decision rule using the f1-score as a metric, evaluated at a stratified five-fold cross-

validation split, where every split is sampled at random in a way that guarantees the

original "truth" label distribution.

Seal detection CNN ensemble

Built upon the original SealNet study [50], my seal detection CNN ensemble ([52])

leverages my sea ice segmentation pre-processing step to focus solely on sea ice habitat

for training and evaluation. Instead of predicting directly with a CNN, my approach

utilizes an XGBoost [28] classifier to combine outputs from several seal centroid seg-

mentation U-Net [115] models. Individual U-Net models were implemented using

the Segmentation Models Pytorch package [149], with an EfficientNet [134] backbones

and added regression heads trained to count seals in addition to their original segmen-

tation head trained to segment out seal centroids. To estimate prediction overhead in

terms of cost and CO2 emissions, I calculate the average amount of floating point num-

ber operations (measured in billions of floating point operations, or GFLOPs) required

to process 1 km2 of input imagery using. My calculations for the cost of processing
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imagery are based on NVIDIA®RTX 4090 GPUs with 24GB (quoted at $1599 in Octo-

ber 2022). To estimate the cost per hour, I spanned the retail price of that GPU across

an estimated service life of four years. Due to the overhead from applying test-time-

augmentation to the output (i.e. average the output across flipped and rotated ver-

sions of the input, 8x), mosaicing output from overlapping patches (i.e. tile with a 50%

overlap between neighboring patches and average the output from overlapping areas,

4x), and generating output from three different U-Nets (3x), the cost of processing im-

agery through my seal detection pipeline increases from the 28776.05 GFLOPs (cost

for single U-Net model, without post-processing) for processing a km2 of WV-3 with

a single U-Net to 2762501.25 GFLOPs per km2, with all the ensembling steps for seal

detection accounted for. The sea ice pre-processing step, however, does not ensemble

from multiple U-Net models, reducing processing cost by a factor of three. I chose

a consumer-grade GPU for my calculations instead of server-grade GPUs typically

found in cloud provider AI nodes for their superior cost-efficiency when compared to

the latter.

5.4 Comparison with other sampling methods

I compare the feasibility of VHR satellite imagery surveys to other potential seal sam-

pling methods (i.e. aerial transects with helicopters, fixed-wing aircraft, and UAVs)

by comparing resolution (pixel
m

), costs (2022 US$), and greenhouse gas emissions (kg of

CO2) over a standardized unit of area. I estimate the operational cost by adding in the

average price for fuel, personnel, and rental over a unit of time. When leasing a piece

of equipment is non-trivial, I estimate cost over time by spanning retail price across

an average service life for that piece of equipment. To calculate area coverage for heli-

copter and fixed-wing aircraft seal surveys, I based my estimates on the exact aircraft

models and sampling strategies used at the APIS project surveys [56]. Operating costs
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for the latter were obtained using Aircraft Cost Calculator®in October 2022. UAV op-

eration cost estimates were obtained from a model specifically built the operate in the

Antarctic, the PW-Zoom fixed-wing UAV [157]. Since this specially built model can-

not be easily priced, I used a quotation for a fixed-wing UAV with similar capabilities

spanned across a four-year service life to estimate its operational costs. Since UAV

operations require the support of a research ship, I include operational cost estimates

from a small ice-breaker in the US research fleet [104] to the cost of UAV surveys. Fi-

nally, I did not take the cost of re-fueling operations for vessels as these depend on a

number of factors such as the availability of refueling bases.

Since the above sampling methods, with the exception of helicopter surveys, work

by recording images for posterior annotation, I compare the feasibility of available an-

notation methods, namely, human observers, and fully-automated AI models in terms

of their cost (2022 US$) and emissions (kg of CO2) and predictive performance follow-

ing out-of-sample performance for VHR imagery from my previous study. I did not

include predictive performance for observers in helicopter-based transects because, to

the best of my knowledge, there is no study providing standardized comparisons be-

tween all three methods. Finally, I compare the aforementioned survey methods in

terms of cost, coverage, and emissions in a table including their efficiency per hour

and during full, 1200-hour field seasons.

5.5 Results

Starting from all available WV-3 imagery below 55 degrees of latitude, and after fil-

tering out a small portion of scenes under complete cloud cover or with an off-nadir

angle > 33o, I found that only 9.5 ± 1.7 % of WV-3 scenes were captured over the

ocean, leading to an average yearly volume of 5790.62 ± 1708.25 scenes (excluding

the incomplete 2022 season). The average number of scenes over the ocean remained

more or less constant since the launch of the WV-3 satellite in 2014 (Figure ??). With a
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FIGURE 5.2: Putative seals from trial SealNet2.0 run. Every magenta spot
indicates a putative seal detected with SealNet2.0 on a set of 14983 WV-3
images. Input images ranged from late September to early April in the

years 2014 through 2021. Imagery copyright DigitalGlobe, Inc. 2021.

median area for scenes over the ocean of 241.31 km2, the estimated yearly cost for pur-

chasing a season’s worth of imagery starts at 23.64 (million US$) and could reach as

much as 43.42 (million US$). Using a simple threshold rule for segmentation-model-

derived sea ice area (i.e. area covered by ice floes ≥ 1455 m2), I am able to classify

out-of-sample scenes for their seal detection potential with an accuracy of 0.92, a recall

of 0.73 and a precision 0.76.

Our compiled results table (5.1) shows that helicopters, especially model Bell 206-L,

offer the greatest cost-efficiency per area covered (0.1 km2/$). Surveying WV-3 images

with SealNet2.0, however, is the most efficient sampling method by several orders of

82



magnitude in terms of minimizing emissions, covering an area of 5072.22 km2 under a

single kilogram of CO2. Moreover, an entire season of VHR imagery covers >10 times

the upper bound for the area of sea ice that could be covered by helicopter in an entire

field season, even under the unrealistic assumption of no re-fueling operations.

TABLE 5.1: Comprehensive seal survey method comparison including
cost, coverage, and emissions involved. Sampling methods include he-
licopters (H), fixed-wing airplanes (P), research ships (RS), fixed-wing
drones (UAV), human observers, and my fully automated pipeline (AI).
Annual estimates for coverage, cost, and emissions assume a full 1200-
hour Antarctic field season for on-site surveys and a 2000-hour full work
year for human observers. An estimate for 384 human observers is in-
cluded to illustrate the requirements for processing an entire season of
VHR imagery manually. Because UAV operations require a support ves-
sel I include an estimate of cost with six PW-ZOOM UAVs aboard the
US Navy ice breaker RV Laurence M. Gould (LMG). Operating costs for
the LMG do not include renting or buying the vessel itself. Similarly, the
costs of annotating records obtained from cameras fixed-winged planes,
and drones are omitted from this summary. Since I did not take refuel-
ing and maintenance operations into account in my calculations, coverage

and cost for aircraft should be treated as an upper bound.

Coverage Cost Emissions Coverage Cost
(km2 / hr) ($ / km2) (kg CO2 / km2) (km2 / year) ($ / year)

PW-ZOOM (UAV) 4.4 6.19 1.17 5280.0 32,688.1
Bell 206L (H) 118.0 9.9 3.14 141600.0 1,402,428.0
BO 105 (H) 118.0 13.14 3.62 141600.0 1,860,546.0
SealNet2.0 (AI) 1223.17 24.0 2 ×10−4 1,397,760.0 33,536,187.02
UAV (x6) + LMG 26.4 31.89 1.71 31680.0 1,010,365.07
Human obs. 1.75 35.43 0.02 3640.0 128960.0
Human obs. (x384) 672.0 35.43 0.02 1,397,760.0 49,520,640.0
Polar 2 (P) 33.6 39.3 17.73 40320.0 1,584,528.0
LMG (RS) 6.0 198.51 270.62 7200.0 1,429,293.37

5.6 Discussion

Our study provides a baseline for the feasibility of candidate sampling methods for

establishing a regular Antarctic pack-ice seal survey program. Taking into account

a wide variety of factors such as fuel consumption, crew size, equipment lease, etc.,

I find that helicopter-based surveys with field biologists detecting seals in real-time,
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especially those using smaller aircraft such as model Bell 206-L, outperform other sam-

pling methods in terms of cost-efficiency by a wide margin (>2x more efficient than

the runner up method, AI-based VHR surveys). However, when compared with the

latter, AI-based surveys in VHR have the desirable properties of 1) keeping permanent

records to allow verification; 2) avoiding dangers involved with operating aircraft in

the Antarctic; 3) ease of scalability with the purchase of more imagery and addition

of more GPUs, and 4) several orders of magnitude fewer CO2 emissions (>125 times

more efficient than the breathing of a human observer and > 18,000 times more effi-

cient than a Bell 206-L helicopter). The puzzling low cost-efficiency of UAVs 5.1, given

their relatively low fuel uptake and comparable cruise speed to helicopters, stems from

mosaicing techniques requiring a large overlap (>60%) between neighboring images

(e.g. [98])

Even adding a conservative overhead of 25% extra work for transferring imagery,

tiling scenes into patches, and storing output, a single modern GPU makes it possible

to go over a season’s worth of imagery in 1142 hours (∼50 days) – highlighting the

cost-efficiency and reduced carbon footprint of processing VHR imagery with fully-

automated systems. For comparison, taking into account an average of 4x coverage

for statistical post-processing, it would take 384 full-time human observers to cover

the same extent. The elevated cost of commercial satellite imagery, however, remains

a formidable obstacle to the implementation of regular VHR-based surveys, at an aver-

age yearly expense of $33,553,035.38. Alleviating these costs in international research

areas such as the Antarctic would easily make VHR-based surveys more cost-efficient

than the other available survey methods. Moreover, focusing on specific geographic

locations and time-frames can greatly reduce this price tag. For instance, sampling the

entire subset of imagery over fast-ice that is relevant during the Weddell seal breeding

season, e.g. [75], reduces yearly cost by an order of magnitude.

CNN-based methods, however, introduce important additional caveats since they
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often perform well in the exact context they were trained for but may fail to gener-

alize to a broader context even with a clear separation between training, validation,

and tests sets. Our proof-of-concept study in automated seal detection [50] illustrated

this potential. In addition, the spatial resolution of VHR imagery is much lower than

that provided by aerial imagery and though sensors such as WV-3 are adequate for

seal detection, they do not provide enough detail for individual seals to be directly

identified to species. Species identification is important for policymakers because, as

has been the case for Pygoscelis penguins ([29]), each species might respond differently

to external pressures such as krill fishing and sea ice loss (e.g. [45]). One way to cir-

cumvent this drawback to UAV-based detection methods would be to use contextual

clues such as the spatial arrangement of groups of seals, substrate characteristics (e.g.

fast-ice vs. pack-ice, floe size, etc.), and haul out phenology to infer putative species

identification. Early work in this area has been promising and this remains an exciting

area for future research.

A comprehensive comparison of performance and efficiency between citizen scien-

tist campaigns and fully-automated AI pipelines for seal detection surveys merits fur-

ther investigation. While I believe the latter provides compelling advantages in terms

of general cost-efficiency, citizen scientist campaigns represent a promising generator

of training data and AI validation. This is especially important given the complexity

of the task at hand and the potential pitfalls of relying too much on performance esti-

mates obtained on limited test sets given the considerable risk of CNN-based methods

to overfit training and validation sets.

Though our adapting our sea ice segmentation model reliably predicted scenes

with seal habitat upon evaluation, my pipeline could be further improved by replac-

ing it with a potentially more efficient and more accurate classifier CNN, specialized

in pinpointing locations where seals, if present, could be found. To convert putative
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seals from a fully-automated seal detection model into credible intervals for popula-

tion density, we will need to develop dedicated statistical tools that account for detec-

tion errors, seal haulout behavior, seasonality, and dependence on external environ-

mental factors.

Fully automated, VHR-based, seal detection surveys stand out as clean, affordable,

and fast survey methods to monitor the health of Antarctic pack ice seal populations

and, through them, the entire SO ecosystem.
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Chapter 6

Conclusion

In this thesis, I have developed an automated CNN-based detection pipeline for massive-

scale seal and sea-ice surveys that progresses from an initial proof-of-concept (Chap-

ter 2 [50]) through to a robust model (Chapter 4 [52]) that harnesses a novel sea ice

segmentation algorithm (Chapter 3 [51]) and, when placed in the context of a techno-

economic comparison, delivers several considerable advantages over alternative meth-

ods (Chapter 5 [53]). Beyond the application to pack-ice seal surveys explored in my

dissertation, VHR imagery has been proposed as a general tool to survey other large-

bodied animals (e.g. African megafauna [148], whales [17]), elephant seals [92] with

applications for the design and monitoring of marine protected areas [74].

The utility of VHR imagery for animal surveys hinges on a few key aspects about

the target organism and its spatial context: 1) how large is the animal, and how dis-

tinctive it is from its background and other co-occurring animal species? i.e. is there

enough visual information to detect it with confidence?; 2) how often is the animal

available for detection? is that predictable?; 3) are there other sampling tools that work

for this context? (i.e. does it make sense to purchase VHR imagery or is the organism

amenable to cheaper alternative surveys?); and 4) is there an existing body of experts

to create annotations for training, model selection, and out-of-sample evaluation? The

ideal organism for VHR-enabled survey is large-bodied (> 1.5 m), contrasts visually

against its preferred environment, and displays a distinctive pattern of aggregation

that allows it to be distinguished from other features in the landscape. Smaller-bodied
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animals are also amenable to VHR surveys where they aggregate in dense clusters or

when they modify the landscape (e.g. through the production of guano [85]) in ways

that can be observed from space. VHR-based surveys have particular advantages over

alternative methods in remote and inaccessible regions where the logistical burdens of

conducting field operations limit direct access. In these cases, the cost of imagery and

the laborious annotation process required to train automated detection systems easily

outweighs the ongoing costs of long-term monitoring using more traditional means.

Far more than demonstrating the potential for using these tools for pack-ice seal

monitoring, my contributions are twofold: A) a reliable tool for surveying Antarctic

pack-ice seals that can immediately be used to extract putative seal locations in WV-

3 imagery; and B) the largest corpus of expert-curated, geo-tagged seal annotations

available. Finally, I provide a sample of > 350,000 putative seals obtained by process-

ing 14983 WV-3 scenes through my SealNet2.0 pipeline (Figure 6.1). With statistical

treatment to address imperfect detection and partial availability, such a dataset raises

the opportunity to address a number of important ecological questions on Antarctic

pack-ice seals population trends, breeding biology, phenology, and many other as-

pects. Moreover, the presence/absence of detected seals, much like penguin colonies

(e.g. [75]), could be used as an environmental covariate when modeling other or-

ganisms and improving our understanding of niche partitioning in the SO. Finally,

expanding my sea ice segmentation model to include broad categorical labels could

provide granular information for habitat modeling applications and even improve the

quality of the ice floe segmentation output given the more rich supervision signal for

training the CNN.

One of the biggest drawbacks of adopting methods such as mine, as exposed in

(Chapter 4, Table 5.1), is the substantial cost of acquiring commercial VHR imagery. I

argue, however, that rather than excluding all but the wealthiest of research institu-

tions, commercial satellite imagery may democratize Antarctic science. Researchers in

countries without Antarctic research programs now have the possibility of obtaining
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FIGURE 6.1: Putative seals from trial SealNet2.0 run. Every magenta spot
indicates a putative seal detected with SealNet2.0 on a set of 14983 WV-3
images. Input images ranged from late September to early April in the

years 2014 through 2021. Imagery copyright DigitalGlobe, Inc. 2021.

fine-grained information from a region of interest, often with repeated observations,

while spending orders of magnitude less than it would take to build and operate ice-

breaker ships [104] and Antarctic field stations [88].

I have paved the way for a fully-automated, reliable, and sustainable method for

surveying Antarctic pack-ice seals. The next logical step would be developing sta-

tistical tools for true uncertainty estimation taking addressing two aspects: imperfect

detection (i.e. false-positive and false-negative errors by the detection model) and

partial availability (i.e. dealing with the portion of the population that is underwa-

ter at the time the input image was captured). One major challenge in integrating

89



this step into my seal detection pipeline (Chapter 4, Figure 5.1) is the dramatically

lower spatial resolution at which relevant environmental features are obtained (e.g.

bathymetry, 500m cells) without sacrificing granularity nor creating pseudo-replicate

observations. To check for the validity of an environmental feature set for detection

modeling would be including them within the tree-based CNN ensemble model and

verify whether adding this new piece of information improves upon previous out-of-

sample performance. In case they are informative, extracting Shapley scores (a game-

theoretical measurement of the contribution of each feature to the final output [123])

for each detection could work as a surrogate for a habitat suitability model, hinting at

combinations of environmental features that are conducive to the presence/absence of

seals.
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