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Abstract of the Dissertation 
 

Eco-Social and Remote Sensing: Applications Across a New Era of Ecological Data 

by 

Alexander Borowicz 

Doctor of Philosophy 

in 

Ecology and Evolution 

Stony Brook University 

2021 

 

Field studies in ecology provide the basis for much of our insight into natural processes 

and the anthropogenic effects upon them. But the scale of inquiry, both spatial and temporal, and 

the speed with which questions can be posed and answered, is only partly driven by the 

processes themselves. Ecological inquiry, and thus conservation-oriented inquiry, is also 

controlled by logistical and bureaucratic constraints. Here I examine the application of 

opportunistic data and ‘found’ data, broadly available in an era of camera and mobile-sensor 

ubiquity, to ecological questions. I propose methods and applications to leverage these data and 

to combine them with satellites and unoccupied aerial vehicles. Using a series of case studies, I 

demonstrate methods and applications to augment, supplement, and complement traditional field 

studies, especially at the larger spatial scales. By combining imagery from modern unoccupied 

aerial vehicles, historical aerial surveys, and Landsat satellites, I estimate not only the current 

abundance and distribution of penguins in a previously unknown penguin hotspot known as the 

Danger Islands, but can establish the population dynamics of Adélie penguins (Pygoscelis 
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adeliae) in the region across a nearly 60-year span. The population of Adélie penguins in the 

Danger Islands (751,527 breeding pairs) is larger than the rest of the Antarctic Peninsula region 

combined. This discovery has triggered a series of proposals to protect this tiny, but biologically 

critical, penguin hotspot. 

Using contemporary aerial imagery as training data within a deep-learning framework, I 

also demonstrate the potential for automated analyses of very high-resolution satellite imagery as 

a means of surveying large cetaceans. Even at the finer temporal scale of within-season 

phenological processes, computer vision and ‘found’ data can augment and supplement existing 

field data. Combining field-collected images and observations of Weddell seals (Leptonychotes 

weddellii) with images sourced from the photo-sharing platform Flickr, I demonstrate the 

feasibility of photo-identification for among-year tracking in this species and provide evidence 

that Antarctic Peninsula Weddell seals molt earlier than Weddell seals elsewhere in Antarctica. 

Using similar methods, I provide the first description of Antarctic fur seal (Arctocephalus 

gazella) distributions on the Antarctic Peninsula and provide evidence for late-season dispersal 

and steady abundance over the last 25 years, despite dramatic declines at well-surveyed breeding 

colonies. The methods and applications I propose provide a framework for broadening both the 

spatial scale of ecological inquiry in many systems and deepening the pool of observations from 

which we may make inferences. In an era of rapid environmental change, making full use of data 

outside the realm of traditional field surveys can provide fuller and more rapid assessments of 

change and baseline states to improve the efficacy of conservation policy and practice. 
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 the period of a low tide is about all men can endure  

 John Steinbeck, Log from the Sea of Cortez 
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Frontispiece 
 

 

For all about that Rock the Sea did flow. 

And Danger well he wist long to continue there. 

 

Edmund Spenser 
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1 Introduction 
 

 

The Antarctic is a region with a highly variable climate, such that the regular extreme 

conditions in the form of cold air and water temperatures and polar light intervals are interrupted 

by variable temperatures, precipitation, and wind speed. The variability, which can occur within 

seasons, among years, or on decadal scales, is strong enough to complicate our ability to assess 

the strength and nature of anthropogenic climate change in the region. Despite decades of 

warming between the 1950s and early 2000s, (Turner et al. 2005; Thomas et al. 2013), recent 

cooling events, when viewed alongside the long-term ice record, demonstrate that at least some 

of the recent warming and co-incident ice loss on the Antarctic continent falls within the range of 

historical climate variability (Thomas et al. 2013; Turner et al. 2016a; Turner et al. 2016b). 

The potential complications of spatial scale are pronounced on the Antarctic Peninsula, a 

body of land and its associated islands that span 1,200 km from the permanent land-fast sea ice 

in the south to the generally ice-fee coasts of the north. Much of Antarctic Peninsula research is 

conducted in the vicinity of permanent research stations. These provide a solution to the 

logistical challenges of conducting research in a polar environment but inherently limit the 

spatial extent of inquiry, leading to ‘central-place researchers.’ Moreover, their existence and 

origins point to the original impetus for Antarctic exploration and research, which has its roots in 

geopolitics and resource extraction (Dudeney & Walton 2012; Hemmings 2017) rather than 

reflecting a fundamental interest in elucidating Antarctic phenomena. The establishment of a 

permanent Antarctic research station is one of the methods for a state to declare its status within 

the Antarctic Treaty system (Hemmings 2017). 
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The result of a station-focused research program is clear when considering the Antarctic fur 

seal (Arctocephalus gazella). This species, hunted to near-extinction in the 19th century and 

effectively extirpated from the Antarctic Peninsula until the mid-20th century (O’Gorman 1961), 

has staged a remarkable recovery with very minimal human intervention aside from the cessation 

of hunting (Foley & Lynch 2020). The early periods of this recovery, however, which took place 

largely between the 1950s and 2000s, was, in many ways, overlooked by the station-based 

national research programs of the Antarctic until the 1990s. Occasional regional or sub-regional 

surveys (e.g., Aguayo 1978) and regular studies from Cape Shirreff, home of the largest seasonal 

breeding colony of Antarctic fur seals on the Peninsula, provide some insight into the trajectory 

of population growth. The effect of rapid population growth on the Antarctic Peninsula 

ecosystem and on the populations and behaviors of potential competitors remains effectively 

unknown because there has been little effort to understand this species at the spatial scale of its 

interactions with the surrounding environment.  

Many pinnipeds, including the Antarctic fur seal, are highly mobile, exploiting vast foraging 

grounds of thousands of square kilometers of ocean (e.g., Arthur et al. 2017). Yet for the 

Antarctic fur seal and many other Antarctic species, much of our understanding comes from 

studies of the breeding season when they are least mobile. While focusing our efforts on 

quantifying the reproductive output and trajectory of a population provides valuable insight on 

the overall state of the Antarctic ecosystem, we must also investigate the broader region. By 

doing both, even if the regional data are patchy or opportunistic, we can pair the depth of station-

based research with the breadth of wider observations and learn about the broader drivers of 

ecosystem change.  
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Highly-mobile species can have a profound impact on their environments, from the 

ecosystem-engineering effects of elephants (e.g., Pringle 2008) to the nutrients and propagules 

deposited on islands by seabirds (McCauley et al. 2012). Such species are of particular interest, 

as their movements put different, spatially discrete communities into contact, potentially 

broadening the scope of local environmental stressors. They also present particular challenges, 

both in terms of study logistics and for understanding larger ecosystem interactions, as their 

effect on communities is not consistent over space or time (Webb et al. 2017). 

The interactions of highly-mobile species with habitats, species, and communities illustrate 

some of the challenges ecologists face in thinking about scale when examining ecological 

patterns and mechanisms. The scale of inquiry or, more directly, of study-design, can lead to 

vastly different or seemingly contradictory inferences (Thrush et al. 1996; Gotelli & Colwell 

2001; Chase & Knight 2013), which complicates generalization and synthesis. As such, we 

should take particular note of instances in which our sole source of inference about a system or 

phenomenon comes from a single scale of inquiry, whether extent or grain, spatial or temporal.  

With limited monitoring (i.e., a limited temporal extent), our ability to associate the overall 

population trend of highly-mobile species with potential environmental drivers is limited. To that 

point, better monitoring is needed, and a broader approach to formulating study designs in the 

face of a lack of historical data. To gain a broader spatio-temporal understanding of Antarctic 

Peninsula dynamics, innovation and imagination are required, especially given the logistical 

challenges of the region. 
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1.1 Rethinking Ecological Data 

 

 

Given the complexity of ecological systems (Brown et al. 2002; Anand et al. 2010; Park 

& Talbot 2018) and the rapid change related to anthropogenic global climate change in many 

natural systems (Walther et al. 2002; Parmesan 2006; Kelly & Goulden 2008; Hoegh-Guldberg 

& Bruno 2010), there is an urgent and persistent need for ecological data to establish baselines 

and monitor change, yet many systems and regions suffer from wide data gaps. These gaps affect 

both our ability to understand the ecological processes that underpin the interactions of species 

with external stressors (Flather et al. 1997; Kaschner et al. 2012; Thurstan et al. 2015) and our 

ability to monitor and understand the effects of conservation interventions (Visconti et al. 2013).  

 While ecology as a discipline has accommodated technological innovation over the 

decades, its roots tap deeply into natural history (Dayton & Sala 2001; Bury 2006). The interplay 

of the methodological challenges of examining complex systems with the observational approach 

of the natural historian have and continue to create philosophical disagreement within the 

discipline (Weiner 1995; Bury 2006). And yet, with substantial data gaps across spatial, 

temporal, taxonomic, and systematic scales, imagination is needed for ecological inquiry to keep 

pace with anthropogenic disturbance, management, and policymaking.  

 Across the recent decades of this still-young discipline, innovation and technological 

advancement have opened new avenues of research, including entire scales of inquiry – from the 

microbiome to the global – that were previously inaccessible. While the technologies themselves 

have not necessarily been at the cutting edge – ecological research rarely explicitly driving the 
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advancement of technology – new applications for technologies common in other fields have 

provided broad new insight when brought to bear on ecological questions. The appearance of 

birds in radar detections (Lack & Varley 1945) profoundly altered the scale at which bird 

populations could be studied, and the discovery of whale vocalizations (Payne & McVay 1971) 

had effects on both society and the study of cetacean populations and movements. There are such 

examples regularly across the discipline, whereby the adoption of a technology for a particular 

question provides an opportunity for others to imagine its potential applications, as with 

radiotracking and radiotelemetry for wildlife (Craighead & Craighead 1972; Cagnacci et al. 

2010), field audio-recording (Mennill et al. 2006), aerial imaging (Rutz & Bluff 2008), 

biologging (e.g., Rutz et al. 2012), and molecular techniques (Andrew et al. 2013). 

 Across spatial ecology, there are frequently tradeoffs between analysis across a wide 

spatial extent, and the grain or resolution of the analysis (Fassnacht et al. 2006), and more 

broadly a mismatch between the scale of observation and the scale of the mechanism being 

studied (Turner et al. 1989; Levin 1992; Denny et al. 2004). The advent of aerial photography for 

ecology (Hempenius 1974; Zonneveld 1974) and satellite remote sensing (e.g., Work & Gilmer 

1976; Rea & Ashley 1976), dramatically broadened the spatial extent of ecological analyses to 

the landscape scale, but by using data at a coarser grain (e.g., 1-km for Landsat-1). In the decades 

since, as sensor and transmission technology has improved, some satellite sensors can provide 

imagery with a resolution of 31 cm per pixel (WorldView satellites: Maxar Technologies). 

 As finer spatial grain becomes practicable at the same time as broad spatial extent, as 

with satellite remote sensing, we come closer to meeting Levin’s (1992) challenge to observe at 

both the scale of the pattern and the scale of the mechanism. In the meantime, there exists a wide 

range of spatial and temporal scales that are poorly observed and which are essential for the 
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creation of generalizable inference in the face of rapid change that itself proceeds differentially at 

different scales of observation.  

In this vein, and with an eye to demonstrating opportunities that may be broadly 

applicable to other systems, regions, and taxa, I describe and demonstrate several methods that 

work across spatial and temporal scales to provide insight into patterns among Antarctic 

megafauna whose drivers may be local but whose effects are potentially regional. I use these 

methods to aggregate current and historical data to fill knowledge gaps, broadening the pool of 

‘acceptable’ ecological data while expanding its spatial extent, and demonstrating the ability of 

deep-learning methods to supplement and augment traditional approaches to field research. 

Through these methods I provide some of the first information on regional-scale patterns of 

distribution and movement for two species of Antarctic pinniped and illuminate the potential 

scope of the problem of an insufficient spatiotemporal extent by documenting a previously un-

surveyed Adélie penguin colony that represents half of the population of this species in the 

region and appears roughly stable over the last 60 years, despite considerable declines elsewhere. 

In each case, I describe the potential for future, broader applications to meet the challenges of the 

moment. 
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2 Multi-modal survey of Adélie penguin     

mega-colonies reveals the Danger   

Islands as a seabird hotspot 
 

 

 

2.1 Abstract 

 

 

Despite concerted international effort to track and interpret shifts in the abundance and 

distribution of Adélie penguins, large populations of Adélie penguins continue to be identified. 

Here we report on a major hotspot of Adélie penguin abundance identified in the Danger Islands 

off the northern tip of the Antarctic Peninsula (AP). We present the first complete census of 

Pygoscelis spp. penguins in the Danger Islands, estimated from a multi-modal survey consisting 

of direct ground counts and computer-automated counts of unmanned aerial vehicle (UAV) 

imagery. Our survey reveals that the Danger Islands host 751,527 pairs of Adélie penguins, more 

than the rest of AP region combined, and include the third and fourth largest Adélie penguin 

colonies in the world. Our results validate the use of Landsat medium-resolution satellite 

imagery for the detection of new or unknown penguin colonies and highlight the utility of 

combining satellite imagery with ground and UAV surveys. The Danger Islands appear to have 

avoided recent declines documented on the Western AP and, because they are large and likely to 

remain an important hotspot for avian abundance under projected climate change, deserve 

special consideration in the negotiation and design of Marine Protected Areas in the region.  
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2.2 Introduction 

 

 

Monitoring populations is central to conservation strategies and to identifying threats to 

species. Indeed, central to the Convention on Biological Diversity (CBD 2017), as well as other 

key conservation measures (Agnew 1997; Southwell et al. 2017), is the assumption that we can 

measure such diversity and abundance. Numerous studies now suggest that Adélie penguin 

(Pygoscelis adeliae) populations are undergoing dramatic shifts in abundance, with marked 

declines along most of the Western Antarctic Peninsula (WAP) and associated sub-Antarctic 

Islands (Trivelpiece & Fraser 1996; Fraser & Patterson 1997; Sander et al. 2007; Forcada & 

Trathan 2009; Lynch et al. 2010; Lynch & LaRue 2014) and sharp increases in the Ross Sea and 

Eastern Antarctica (Lynch & LaRue 2014; Croxall et al. 2002; Ainley et al 2003; Jenouvrier et 

al. 2006; Lyver et al. 2014; Southwell et al. 2015; Che-Castaldo et al. 2017). While the causal 

drivers of these changes remain unknown and may in fact vary across the continent, several 

studies have linked Adélie penguin population trends to changes in sea ice extent and 

concentration as well as changes in air temperature and precipitation patterns and their possible 

effects on prey availability (Ainley et al. 2005; Forcada et al. 2006; Massom et al. 2006; Che-

Castaldo et al. 2017). Understanding the population dynamics of sentinel species, such as Adélie 

penguins, will help illuminate the effects of climate change on less easily-studied components of 

the ecosystem (Trivelpiece et al. 1990; Ainley et al. 2002). Much of the concern regarding 

climate-driven changes has been focused on the WAP and South Shetland/South Orkney Islands, 

where Adélie penguin populations have declined sharply (~70%) over the last several decades 
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(Lynch et al. 2013; Humphries et al. 2017). Along the WAP, the northern end of Marguerite Bay 

(67° 30’ S) represents a clear boundary that divides areas of Adélie penguin population decline 

in the north from areas where abundances are either stable or increasing to the south (Casanovas 

et al. 2015). Far less is known of Adélie penguin populations along the northern and eastern 

portions of the AP, a region perhaps more closely tied to the Weddell Sea in terms of climate and 

sea ice production than to the dynamics of the WAP (Ducklow et al. 2007; Murphy et al. 2007).  

The Danger Island archipelago is comprised of 9 islands stretching over approximately 

35 km at the northernmost tip of the AP in the north-western Weddell Sea (Fig. 2.1). Despite 

their relative proximity to the WAP, which sees much of the tourist and fishing ship traffic in the 

Antarctic (CCAMLR 2016), pack ice is common around the Danger Islands even in austral 

summer (Comiso & Gordon 1998). In fact, due to the currents of the Weddell Sea, which drive 

sea ice northward, access to the islands is precluded in most years. Heroína Island, at the 

northeast end of the archipelago, is the most frequently visited of the Danger Islands and yet 

hosts a median visitation rate of only one ship landing per year (IAATO 2017). It is also the only 

island to date with a population estimate (285,000-305,000) derived from a ground survey of the 

island (Naveen et al. 2000; Lynch et al. 2008). While a previous geological expedition (Elliot et 

al. 1978) noted the presence of Adélie penguins on all of the Dangers Islands (with the exception 

of Darwin Island, which was not visited) and several others were photographed (by Melissa 

Rider and Steve Forrest, pers. comm.) from a passing vessel in 2008/09, the presence of Adélie 

penguins on several of these islands went largely unrecognized until a recent Landsat satellite 

survey of the Antarctic identified several islands, together supporting what appeared to be nearly 

200,000 Adélie penguin nests (Lynch & Schwaller 2014). The (re)discovery of these 

populations, combined with evidence that the Danger Islands as a group supported a regionally-
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significant population, motivated an expedition to the area. In this paper we report on the first 

comprehensive seabird survey of the Danger Islands and describe a heretofore unrecognized 

Adélie penguin hotspot. We document a novel a multi-modal survey approach comprised of 

ground surveys, and imagery from both satellites and unmanned aerial vehicle (UAV) 

photographic surveys and describe the cross-validation of these methods to accommodate the 

different sources of uncertainty introduced by each hotspot. We also discuss the critical 

implications of this seabird hotpot for the design of Marine Protected Areas in the Antarctic 

Peninsula region.  
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Figure 2.1: a, Map showing the location of the Antarctic Peninsula and b, 

The location of the Danger Islands group on the Antarctic Peninsula, both 

created using ESRI ArcMap 10.0 (http://desktop.arcgis.com/en/arcmap/). 

c, Quickbird image of the Danger Islands taken 22 January 2011 (Imagery 

copyright 2011 DigitalGlobe, Inc.). 
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We define the Danger Islands as including (from north to south): Brash Island, Heroína 

Island, Comb Island (also known as Peine Island), Beagle Island, Platter Island (Plato Island), 

Darwin Island, and Earle Island (Fig. 2.1). Dixey Rock and Scud Rock are also located in this 

area and were also surveyed. These islands range from generally low and flat (Platter Island), to 

sheer cliff faces (Darwin and Comb Islands), with most containing a mix of steep scree slopes, 

flat areas, and cliffs. The islands are composed of intrusive igneous rocks, predominantly 

feldspar-rich gabbro, that were formed during the late Cretaceous and are of similar age to the 

plutonic rock formations at the tip of the Antarctic Peninsula (Hamer & Hyden 1984). Data from 

this region are sparse, but during the last glacial maximum these islands may have been glaciated 

until around 6000 years before present (bp; Ingólfsson 2003). While the Holocene occupation 

history of penguins on the Danger Islands is currently undescribed, radiocarbon-dated remains 

from other northern Antarctic Peninsula breeding sites indicates a relatively recent (~600 bp) 

advent of breeding populations (Emslie et al. 2017). 

 

2.3 Methods 

 

 

 

2.3.1 Field survey 
 

Surveys were conducted from the M/V Hans Hansson from December 9-18, 2015. We 

used a variety of survey methods on each island depending on conditions and time ashore, 

including one or more of the following methods: (1) manually counting individual nests, (2) 
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counting individual nests in panoramic photos taken from the ground or the vessel, and (3) 

counting individual penguins from photographs captured by UAV. The combination of these 

methods allowed for efficient data collection with cross-validation of survey modes. The 

precision of census counts varied by island (Table 2.1), and island-specific error estimates were 

propagated to the archipelago-wide confidence intervals for total abundance. 
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Table 2.1 Census summary. ‘N1’: ≤5% error; ‘N2’±: 10% error; ‘N4’: ±50% error. 

 Beagle Brash Comb Darwin Dixey 

Rock 

Pygoscelis adeliae 284535‡ (N2) 94951‡ (N2) 12000# (N4) 5804# (N1) 0 (N1) 

Pygoscelis papua 0 (N1) 2270 (N1) 186 (N1) 0 (N1) 0 (N1) 

Pygoscelis 

antarctica 

0 (N1) 0 (N1) 0 (N1) 0 (N1) 0 (N1) 

Phalacrocorax 

atriceps 

    0 (N1) 

Pygoscelis adeliae Earle Heroína Platter Scud Rock  

Pygoscelis papua 21071‡ (N2) 292363‡ 

(N2) 

40803 (N1) 0 (N1)  

Pygoscelis 

antarctica 

847 (N1) 999 (N1) 223 (N1) 0 (N1)  

Phalacrocorax 

atriceps 

0 (N1) 27 (N1) 0 (N1) 0 (N1)  

Pygoscelis adeliae 156 (N1)   0 (N1)  

 

† First direct census of this location; ‡Count from drone imagery; # Count from ground or ship-based photography. 
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The timing of our expedition was ideal in terms of penguin phenology (Black 2016), and 

the surveyed colonies were dominated by individual penguins incubating well-established nests. 

Our estimates of abundance, therefore, represent a count of all ‘actively’ incubated nests on each 

island. Active nests were those occupied by a penguin, noting that the presence of eggs or chicks 

in the nest cannot be determined from aerial photography. To facilitate counting, islands were 

divided based on the natural boundaries between "sub-colonies," or naturally-occurring, discrete 

groups of penguin nests. For those sub-colonies too large to count accurately in their entirety, 

divisions were made based on natural markers within the sub-colony or, in their absence, using 

brightly coloured rope laid between nests; such subsections were counted individually. To ensure 

accuracy, each division was counted three times and these three counts were required to agree 

within 5% of their mean. If counts did not agree, divisions were further subdivided until three 

subsequent counts did agree within 5% of the mean. This 5% accuracy threshold corresponds to 

the ‘N1’ level of precision described by Croxall and Kirkwood (1979) and used regularly to 

report penguin abundance in the Antarctic (e.g., Woehler 1993; Naveen et al. 2000; Naveen et al 

2012).  

Full, site-wide counts for Adélie penguins were conducted at Platter and Earle Islands, 

the latter of which was also surveyed by UAV (Table 1). Manual counts of well-defined Adélie 

penguin sub-colonies were conducted at Heroína, Brash, and Beagle Islands as a validation of 

counts based on UAV photographs. Where present, we conducted site-wide counts of gentoo 

penguins and chinstrap penguins as well (Table 1). Adélie penguin populations at Comb and 

Darwin Islands were counted from images taken on the ground or from vessels offshore of the 

islands using Adobe Photoshop’s count tool. On all islands, the presence of other bird or 

mammal species was noted opportunistically (Appendix Table A2.1). 
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2.3.2 UAV-based survey 

 
UAV surveys were performed with a DJI Phantom 3 quadcopter using its stock 1.2 

Megapixel camera. The UAV was flown either manually or automatically using the mission 

planning software Map Pilot App to generate image coverage of each island with at least 70% 

overlap between images. Following the suggestions laid out by Goebel and colleagues (2015), a 

minimum height above ground of 25 m was set for all flights to avoid disturbance to wildlife, 

and a maximum height above ground of 45 m was selected to maintain image quality for penguin 

identification. The geotagged imagery collected with the UAV was post-processed using the 

commercial photogrammetry software Photoscan (Agisoft LLC, St. Petersburg, Russia) which 

generated full, georeferenced orthomosaics, a top-down view of the island – in which each pixel 

corresponds to a fixed physical dimension – of the surveyed islands and their penguin colonies. 

Brash, Earle, Beagle, and Heroína Islands were surveyed using composite panoramic 

images captured by the UAV (example in Fig. 2.2). The timing of our survey was ideal for 

capturing incubating penguins on the nest and the imagery was, in the overwhelming majority of 

cases, unambiguous with respect to penguins that were incubating versus walking through the 

colony or from the ocean. To automatically identify and count the number of occupied nests in 

the UAV orthomosaics we used a Deep Neural Network (DetectNet) implemented in the open 

source software NVIDIA DIGITS (NVIDIA Corporation, Santa Clara, CA). DetectNet is based 

on the GoogLeNet image classification framework (Szegedy et al. 2015) and is specifically 

designed to locate multiple objects of the same type within an image, making it well-suited to the 

task of detecting penguins in aerial imagery. The DetectNet network was trained to detect 

penguins using 512x512 sub-images selected from the orthophotos of the four islands being 

analysed and manually annotated with penguin locations. The images were split into two groups, 



 

17 

 

one for training the network and one for validation, with 160 images and 1237 penguins in the 

training group and 93 images and 673 penguins in the validation group. The manually-labelled 

training data constituted 0.18% of the imaged area and 0.34% of the imaged penguins providing 

a massive decrease in manual labour required. Once trained, full island detection was performed 

by splitting the orthophotos into 512x512 sub-images which were run through the trained 

detector in DIGITS. 
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Figure 2.2: UAV orthomosaic image of Brash Island (above), with examples of zoomed-in 

penguin rookeries (below).  
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False positives generated by this automated nest detection algorithm were comprised of 

both individual non-nesting penguins and artefacts, such as rocks and shadows, that appear 

visually similar to nesting penguins. While nesting penguins are highly spatially structured, with 

strong attraction between individuals (McDowall & Lynch 2017), the false positives are largely 

spatially unstructured. We therefore applied an additional spatial filter to the detections, retaining 

nests based on the distribution of nearest neighbors. Points passing through this spatial filter are 

classified as unambiguous penguin nests and are retained; points rejected at this stage are 

comprised of false positives and a much smaller number of isolated nests incorrectly rejected by 

the filtering process. We validated our nest detections by manually counting a selection of each 

of the four islands surveyed by UAV (Brash, Earle, Beagle, Heroína), and created a simple linear 

regression model to estimate the number of nests based on the number of nests manually counted 

and those counted with our automated method. These site-specific linear models allowed us to 

correct for any site-specific differences in the performance of the detection algorithm. Based on 

this analysis, we have classified our automated counts as ±10% accuracy (i.e., an ‘N2’ count), 

though we note that the average difference between the automated nest counting of UAV 

imagery and an in situ ground count of the same portion of the colony was only 0.6% and so our 

estimates may be even more precise than suggested by an ‘N2’ designation. 

2.3.3 Historical aerial imagery 
 

To understand the potential population trajectory of penguins in the Danger Islands 

region, the spatial extent of current penguin colonies can be qualitatively compared to historical 

aerial photographs (Fig. 2.3). We selected cloud-free photographs from the Falkland Islands and 

Dependencies Aerial Survey Expedition (FIDASE) for Heroína (FIDASE 1957a) and Brash 
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(FIDASE 1957b) islands. These islands were chosen as the FIDASE archive contained quality 

photographs shot nearly on nadir and both had been fully photographed by the UAV. The islands 

were photographed in black and white on Jan. 31, 1957 at an altitude of 4115 m to a scale of 

1:27000, and digitally scanned by the U.S. Geological Survey. Both island frames were 

georeferenced to WorldView-2 satellite images and divided into polygons using segmentation 

algorithms tuned to provide a segment size reasonable for further analysis using Quantum GIS 

(QGIS; QGIS 2016). In both cases, segments were manually classified by a skilled observer as 

"guano" to designate recent guano deposition, "guano-like" to designate areas thought to be 

guano but with less certainly, "old guano" to designate areas of guano accumulation not 

necessarily associated with active nesting, and "non-guano," a classification encompassing rock, 

water, snow, and all other substrates not covered by guano (Fig. 2.3).  
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Figure 2.3: Guano areas (yellow) identified on Brash Island (at left) and Heroína Island (at right) 

from 1957 to present day. a, and h,: manually classified from aerial imagery from 1957; b, and i,: 

manually classified from aerial imagery from 1957 and reduced to 30 m cells for comparison with 

Landsat; c, and j,: Landsat-4 in 1990 classified as described in Methods; d, and k,: Landsat-7 in 

2000 classified as described in the Methods; e, and l,: Landsat-8 in 2015 classified as described in 

the Methods; f, Worldview-2 image taken 19 February 2016 classified as described in the 

Methods (Imagery copyright 2016 DigitalGlobe, Inc.); m, Worldview-2 image taken 2 December 

2015 classified as described in the Methods (Imagery copyright 2015 DigitalGlobe, Inc.); g, and 

n,: nests that were retained by the spatial filter marked as yellow dots overlaid on UAV imagery 

from ground survey described in this manuscript. Panels a, b, f, g, h, i, m, and n displayed using 

ESRI ArcMap 10.0 (http://desktop.arcgis.com/en/arcmap/); Panels c, d, e, h, k, and l displayed 

using ENVI 5.4 (https://www.harris.com/solution/envi). 

http://desktop.arcgis.com/en/arcmap/
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2.3.4 Landsat satellite imagery analysis 
 

Adélie penguin colonies identified in Fig. 2.3 were retrieved from Landsat imagery based 

on the algorithm described by Schwaller and colleagues (2013) and Lynch and colleagues 

(2014). The retrieval algorithm was originally developed for a single sensor and was modified in 

this case to operate on cross-calibrated data from Landsat-4 (imagery date 1990 in Fig. 2.3), -7 

(2000) and -8 (2015). Cross-calibration among sensors was performed by calculating the mean 

difference of similar bands from Landsat-4 and -8 imagery compared to Landsat-7, and then 

adjusting the band values based on the mean differences in each spectral band. The algorithm 

was then applied to the cross-calibrated imagery to classify Adélie penguin colony areas. 

2.3.5 High-resolution commercial imagery 
 

Areas of guano staining were manually identified in high resolution satellite imagery (Fig. 

2.3 panels f and m). A selection of unambiguous pixels within the guano stains were used to 

select other pixels (using Adobe Photoshop) similar in color, and areas were added and removed 

manually based on manual interpretation of the imagery combined with auxiliary information 

from the UAV imagery mosaics. 
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2.4 Results 

 

 

Our survey found 751,527 (95th CI = [710,103 – 792,443]) nesting pairs of Adélie 

penguins in the Danger Islands (Table 2.1) which we estimate (using the Mapping Application 

for Penguin Populations and Projected Dynamics; Humphries et al. 2017) is 55% of all Adélie 

penguins in subarea 48.1 as defined by the Commission for the Conservation of Antarctic Marine 

Living Resources (CCAMLR) once our estimate is added. This subarea includes all of the 

western AP, the waters north of the AP to 60°S, and a portion of the north-western Weddell Sea 

west of 50°W. Without the Danger Islands it contains 606,526 (95th CI = [322,477 – 990,402]) 

Adélie penguin pairs (Humphries et al. 2017). 

 Visual comparison of available aerial, satellite, and unmanned aerial vehicle (UAV) 

images, together spanning a 60-year period, suggests that the extent of the area occupied by 

Adélie penguin colonies on the Danger Islands has remained stable or has modestly-increased, 

though few data exist for the intervening years (Fig. 2.3). A previous ground-based estimate 

(Naveen et al. 2000) of 285,000-305,000 Adélie penguin nests on Heroína Island in 1996/97 is 

remarkably consistent with our updated estimate of 292,363 nests. The consensus of all the data 

considered in this analysis strongly suggests that the Danger Islands have remained roughly 

stable since the earliest records of the 1950s, in stark contrast to declines seen along the WAP. 

In addition to Adélie penguins, we found several significant populations (>100 nests) of 

gentoo penguins (P. papua), particularly at Brash Island, and one small (27 nests) population of 
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chinstrap penguins (P. antarctica) at Heroína Island. Additional information on flying birds and 

marine mammal observations collected during this survey are included in Appendix Table A2.1. 

 

2.5 Discussion 

 

 

This survey provides the first estimates of penguin abundance for this portion of the AP 

region and the first direct ground survey of the Dangers Islands with the sole exception of 

Heroína Island, which was last surveyed in 1996/97. Our estimate is more than three times the 

abundance estimated by an earlier survey (Lynch & LaRue 2014), largely because several 

colonies, not known to exist at the time, were missed entirely. We find the Adélie penguin 

colonies on Heroína Island and Beagle Island are the third and fourth largest Adélie penguin 

colonies in the world (Humphries et al. 2017), respectively, and represent the easternmost 

Antarctic colonies (54°W) of all three pygoscelid penguins until 45°E. Our ground- and UAV-

derived survey provides important validation of satellite imagery as a tool for the discovery of 

new penguin colonies and demonstrates how satellite imagery and field expeditions can 

complement one another in our efforts to track penguin biogeography and long-term trends, 

given the challenge of long-term ground monitoring in the Antarctic. Our discovery of a major 

hotspot of abundance in the Danger Islands is important for our understanding of the global 

distribution of the Adélie penguin and should be considered in the development of future 

conservation measures such as Antarctic Specially Protected Areas (ASPAs) or Marine Protected 

Areas (MPAs).  
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At a regional scale this survey increases the total estimated abundance of Adélie penguins 

in CCAMLR subarea 48.1 by 68%. This dramatic increase in the number of known Adélie 

penguin breeding pairs radically changes our estimates of krill predation in the Northern Weddell 

Sea, in a portion of 48.1 that, notably, has not experienced the levels of krill fishing seen 

elsewhere along the Antarctic Peninsula (CCAMLR 2016; Nicol et al. 2012). The Adélie 

penguins found in the Danger Islands are among those penguins breeding north of the “Adélie 

gap,” a stretch of the coast along the WAP roughly 400 km long from the Adélie colonies on the 

southwestern shore of Anvers Island to the south, to Nelson Island in the South Shetland Islands 

and nearly the tip of the AP to the north (Woehler 1993; Polito et al. 2011). This gap is devoid of 

breeding Adélie penguins and geographically differentiates those Adélie penguins to the south 

from those in the north in both summer and winter foraging habitat (Polito et al. 2011). The new 

abundance estimate for this northern component within subarea 48.1 highlights the spatial 

structure of predator abundance, demonstrating an area of high abundance distinct from those 

along the WAP. Accordingly, an updated understanding of predator distributions, particularly the 

location of major abundance hotspots, may have implications for the management of prey 

resources (Hinke et al. 2017a; Reid et al. 2004).  

While our inference on past trends is unavoidably limited by the lack of prior ground 

surveys, our analysis of the available imagery suggests that Adélie penguin colonies in the 

Danger Islands have not suffered the net declines seen on the WAP, where some colonies have 

declined by an order of magnitude or have disappeared completely (Trivelpiece et al. 2011; 

Lynch et al. 2012; Che-Castaldo et al. 2017). Our findings are consistent with recent modelling 

work (Cimino et al. 2006) showing that the warming of the WAP has followed a west-to-east 

pattern, such that the Danger Islands have been largely spared the environmental changes 
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experienced by the South Shetland Islands and the northern portion of the WAP. In particular, 

the Weddell Sea has not experienced the significant loss of sea ice that is seen in the 

Bellingshausen Sea, and instead shows slight gains over the past several decades (Parkinson 

2002; Parkinson & Cavalieri 2012), providing more consistent foraging habitat for pagophilic 

species such as the Adélie penguin. We recognize, however, that while the evidence for stability 

from 1990-present is well supported by the available imagery, the evidence cannot rule out 

sequential and roughly compensatory periods of increase and decrease in the earlier period 

(1957-1990) as might be expected in any dynamic predator/prey system. 

Given the large number of Adélie penguins breeding in the Danger Islands, and the 

likelihood that the northern Weddell Sea will remain suitable for Adélie penguins longer than the 

rest of the Antarctic Peninsula region, we suggest the Danger Islands should be strongly 

considered for further protection, either through an extension of the proposed Weddell Sea MPA 

that falls just to its south or by way of an MPA in the Western Antarctic Peninsula (Teschke et 

al. 2013; Teschke et al. 2016). Like the Ross Sea, the northern Weddell Sea represents an Adélie 

penguin hotspot of significant conservation value as a potential refugium relative to climate 

change. By establishing the distribution and abundance of penguins in this region, we hope to 

highlight its importance to regional and global populations and encourage more regular 

monitoring of the region. 
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3 Aerial-trained deep learning networks for surveying cetaceans 

from satellite imagery 
 

 

 

 

3.1 Abstract 

 

 

Most cetacean species are wide-ranging and highly mobile, creating significant 

challenges for researchers by limiting the scope of data that can be collected and leaving large 

areas un-surveyed. Aerial surveys have proven an effective way to locate and study cetacean 

movements but are costly and limited in spatial extent. Here we present a semi-automated 

pipeline for whale detection from very high-resolution (sub-meter) satellite imagery that makes 

use of a convolutional neural network (CNN). Our CNN was trained using down-scaled aerial 

imagery and tested on 31 cm-resolution imagery obtained from the WorldView-3 sensor. 

Satellite imagery was tiled and the trained algorithm was used to classify whether or not a tile 

was likely to contain a whale. Our model correctly classified 100% of tiles with whales, and 90% 

of tiles that contained only water. While the resolution of commercially-available satellite 

imagery continues to make this a challenging problem, our approach provides the means to 

efficiently eliminate areas without whales and, in doing so, greatly accelerates ocean surveys for 

large cetaceans. 
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3.2 Introduction 

 

 

 

There is tremendous interest in understanding if and how cetacean populations are 

recovering following the cessation of intense commercial whaling, yet their extensive ranges and 

high level of mobility combine with the challenges of research at sea to leave them poorly 

studied in many regions. While many cetacean species favor shelf edges and other zones of deep-

water upwelling across ocean basins (Hamazaki 2002; Yen et al. 2004; Moore et al. 2010; 

Bedriñara-Romano et al. 2018), most cetacean research is focused on coastal areas where 

populations may be concentrated at key times of the year and are logistically easier to survey. 

Far less work has been done to understand patterns of cetacean habitat use along distant 

continental shelf regions, and limited cetacean surveys in deep-water habitat may skew our 

understanding about preferred habitat (Kaschner et al. 2012). While data loggers and 

transponders have been employed for many species to track movements far outside the range of 

direct observation, providing data with high spatial and temporal resolution (Lesage et al. 2017; 

Weinstein & Friedlaender 2017; Bodey et al. 2018; Grecian et al. 2018; McKinnon & Love 

2018), the cost of these devices often drastically limits the number of animals that might be 

tracked.  

Broad-scale or basin-scale surveys are exceedingly challenging and costly, regardless of 

modality. Between 1975 and 2005, only 25% of the world’s oceans were surveyed for cetaceans, 

with a high proportion of surveys falling inside the territorial waters of the United States (Kot et 

al. 2010; Kaschner et al. 2012). Basin-scale surveys are unavoidably multi-year efforts in which 
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a region is surveyed in parts over consecutive years or involve extensive mark-recapture studies 

(Smith et al. 1999; Branch 2007; Branch 2011). Another approach has been to combine data 

from heterogeneous sources such as aerial and ship surveys (e.g., Branch 2011), strandings, and 

whaling data (Branch et al. 2007). However, these methods are expensive and the results are 

difficult to interpret due to large data gaps. New methods that complement existing tools and 

address these challenges of scale are required. While remote sensing has been used for decades 

to track coarse-grained changes in the environment (e.g., sea ice, land cover, urban 

development), the use of satellite imagery to directly survey animals is much more recent and 

hinges on the use of very high-resolution (sub-meter) imagery that can capture individual 

animals on the landscape (e.g., LaRue et al. 2011; Fretwell et al. 2012; Platonov et al. 2013; 

Lynch & LaRue 2014; Fretwell et al. 2017; Seymour et al. 2017). While the promise of direct 

surveys of wildlife from space is an exciting frontier for wildlife biology, the challenges in 

identifying animals, which are almost always rare and usually only a few pixels in size, remain 

formidable. In addition to the challenges inherent to classification, the volumes of high-

resolution imagery that must be annotated for a comprehensive survey are enormous and require 

advances in computing, storage, and cyberinfrastructure.  

Cetaceans remain a challenging taxon of study given their frequently broad ranges and 

marine life-history, but their size makes them an attractive target for the use of imagery-based 

surveys. Previous efforts to locate whales using high-resolution imagery (Abileah 2002; Fretwell 

et al. 2014; Cubaynes et al. 2019) have been largely successful yet face challenges in bringing 

the process to broader spatial or temporal scales given the time required for analysis (Cubaynes 

et al. 2019). Fretwell and colleagues (2014) successfully identified Southern Right whales 

(Eubalaena glacialis) near Peninsula Valdés, Argentina both manually and using a rule-based 
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classification algorithm in WorldView-2 satellite imagery. This satellite sensor provides 8 

spectral bands and a panchromatic band with a maximum resolution of 46 cm per pixel on-nadir. 

More recently, WorldView-3 imagery has become available, providing a maximum resolution of 

31 cm per pixel on-nadir. Cubaynes and colleagues (2019) found that the spectral response of 

whales declines above the visible red band (630-690 nm). Because both manual and automated 

methods thus rely on only the visible bands, automated algorithms are easily validated by visual 

inspection.  

Ocean basins are large, and the potential habitat of cetaceans may encompass vast areas, 

especially during times of migration. Without knowing where cetaceans are, far more imagery 

must be considered than can reasonably be annotated manually, particularly if surveys are going 

to be repeated with any regularity. With this increase in data volume, the only practical solution 

becomes a workflow that involves a high level of automation to accomplish the otherwise 

tedious task of manually examining millions of pixels constituting hundreds or thousands of 

square kilometers. Although contemporary machine learning algorithms have been in use for 20 

years or more, their application to ecological datasets have only become commonplace in the 

past 5 – 10 years (Humphries et al. 2018). Machine learning applications involving computer 

vision are only now gaining traction as a means of managing large volumes of image data that 

are tedious to analyze manually, such as camera traps, aerial imagery, or time-lapse photography 

(Weinstein 2017). Such algorithms can automate the process of classifying individual features in 

images (e.g., Willi et al. 2009; Zhang et al. 2016) and counting or estimating abundance (e.g., 

Barber-Meyers et al. 2007; Seiferling et al. 2017). Driven by commercial applications, machine 

learning methods have progressed rapidly in the past decade, with particular interest being paid 

to deep-learning methods. Deep-learning algorithms have shown promise in the field of ecology, 
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with applications in acoustic signal detection (Aodha et al. 2018), behavioral predictions 

(Browning et al. 2018), and camera trap classification (Nourouzzadeh et al. 2018), and have been 

adopted or proposed in numerous other fields such as medicine (e.g., Esteva et al. 2017), and 

traffic management (e.g., Lv et al. 2015). 

 We present a cetacean survey method, employing a convolutional neural network (CNN) 

to automate much of the satellite imagery interpretation. Our goal in this initial pilot study was 

not to develop a fully-automated method, but to identify images with a high probability of 

containing a whale and thereby minimize the labor required for expert annotation. Here we 

describe an initial pipeline for whale detection that makes substantial advances toward a fully-

automated detection system up to and including the global scale. 

 

3.3 Methods 

 

 

3.3.1 Imagery 

We pooled aerial imagery extracted from high-resolution video footage shot over various 

water bodies surrounding northern Europe and the United Kingdom by HiDef Aerial Surveying 

Ltd to create a training set of whale and water images (Fig 3.1). The native resolution of the 

aerial imagery was approximately 2 cm per pixel ground-sample distance, which we down-

sampled to 31 cm per pixel using a bilinear resampling function in ImageJ (Schneider et al. 

2012) to match the resolution of Worldview-3 imagery. During the aerial survey, the aircraft flies 

at 549 m above sea level with a speed of 222 km/h and captures multiple image frames of the 
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same whale using four cameras. The two inner cameras cover a 129 m strip width and the outer 

cameras a 143 m strip width and are separated by a gap of about 20 m totaling to an effective 

transect width of 544 m (Weiß et al. 2016). We elected to retain these duplicate images, as each 

frame captures the whale at a slightly different angle or in a different body position and is 

therefore valuable in building the training data set. In total, we had 190 aerial images 

representing 17 individual minke whales (Balaenoptera acutorostrata). 
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Figure 3.1: The automated workflow. Aerial imagery (above) is down-sampled, tiled, and then used to train the model. Satellite 

imagery (below) is pansharpened and tiled before the model can detect whales. Satellite imagery courtesy of the Digital Globe 

Foundation. 
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All satellite imagery was collected at a resolution of 31cm per pixel (on-nadir) from 

DigitalGlobe's Worldview-3 sensor (Digital Globe, Westminster, Colorado; Appendix A3.1). 

This sensor records imagery in a variety of spectral bands in the visible and near-infrared range. 

Multi-spectral bands have a lower resolution (124 cm / pixel) than the panchromatic band, which 

incorporates a broad swath of the visible spectrum and is collected at 31 cm per pixel. To obtain 

very high-resolution multi-spectral imagery, we pansharpened the lower resolution multi-spectral 

bands using the higher resolution panchromatic band using the Gram-Schmidt algorithm 

implemented in ENVI (Exelis Visual Information Solutions, Boulder, Colorado). While 

pansharpening was conducted using all the available bands, we used only the red (630-690 nm), 

green (510-580 nm), and blue (450-510 nm) bands to approximate the RGB image captured 

during aerial survey. 

Given that we required satellite imagery that definitely included whales, we surveyed 

known whale hotspots using Google Earth Pro and located imagery that contained visible 

Southern Right whales (Eubalaena australis) from Peninsula Valdés, Argentina and Humpback 

whales (Megaptera novaeangliae) from Maui, Hawaii (Fig 3.2). We also acquired cloud-free 

imagery of these regions based on times of the year where whales would be very likely to be 

present and active at the surface (Appendix A3.1). We excluded portions of the acquired imagery 

in which sea conditions prevented manual detection of whales. 
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Figure 3.2: Locations of satellite imagery used. Maui, Hawaii (A) and Peninsula Valdes, Argentina (B). 
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3.3.2 Processing 

To prepare imagery for use in model training, we split each image into small 32 × 32-

pixel tiles each measuring 98.4 m² in area (Fig 3.1; S1 File). For both aerial and satellite 

imagery, tiles were manually separated into whale and water classes. We chose subsets of each 

satellite image for testing but retained all aerial water tiles for training, resulting in 40416 aerial 

tiles (water: n=39726; whale: n=690) and 40516 satellite tiles (water: n=40474; whale: n=42). Of 

the water satellite tiles, we randomly selected a subset (n=1390) to reduce testing time. 

 We selectively removed some aerial tiles prior to creating folds. These images contained 

a miniscule portion of a whale that was recognizable to a human observer only when put into 

context with the surrounding tiles. Given that these small whales were better captured by other 

neighboring tiles, we removed them from both training and testing to avoid confusion. Where 

whales were cleanly bisected by the border between tiles, such that at least 20% of the whale 

remained in the tile, we retained these images. The same procedure was adopted in with the 

satellite imagery to avoid false-negatives for whales that would already be captured by the model 

in another tile, reducing the number of satellite whale tiles used for testing from 42 to 32 (Fig 

3.1). 

3.3.3 Deep learning with convolutional neural networks 
 

CNNs are extensions of traditional neural networks that work by summarizing patterns in 

images across many “hidden” layers through “convolutions” (i.e., complex data transformations; 

LeCun et al. 1998). Neural networks, the basis for CNNs, operate by simulating how neurons 

transmit information through the central nervous system (Rosenblatt 1962; Rumelhart et al. 

1986). Information is input at a commencing node, which then passes information to several 
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other nodes, which pass on to more nodes, until the output is translated at a terminal node. Each 

node adds some formulation to help decode the information passed into the commencing node. 

In CNNs, nodes are organized into “hidden” layers, where each layer applies a different image 

transformation (or convolution) to information from the previous layer. Transformations could 

include tasks such as stretching, skewing, splitting, or changing contrast of images. During 

training, the training images – or images containing only the target classes, whales and water – 

are fed to the model so that it can ‘learn,’ i.e., adjusting the network’s parameters to minimize 

the differences between the network’s outputs and the corrected labels. The model, once 

converged, can be validated using a test image subset that was withheld and not included in the 

training process. This form of machine learning minimizes the need for manually designing a 

rule-based classification scheme, but limits the interpretability of the model, which acts as a 

black box. 

3.3.4 Model training 

We trained our model using down-sampled aerial imagery. We separated 75% of aerial 

imagery for use in training, and 25% for use in validating the trained model, repeating this 

process to create a 4-fold validation system. We tested our model's classification performance by 

applying it to very high-resolution satellite imagery. Manually-annotated satellite imagery, in 

which whales and empty ocean were identified by expert annotators, was used as a standard 

against which the CNN's performance was compared. It is important to note that our model was 

naive to 'real' satellite imagery and was applied without further refinement following its 

development using the down-sampled aerial training and testing dataset. 
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We implemented our CNN using the Pytorch framework (Paszke et al. 2017), which 

makes it easy to implement, train, and adapt a model, and used the ResNet architecture with 18 

layers (He et al. 2016). The network takes as input a 32 × 32 pixel image and outputs a vector of 

two elements, which represent the probability of the input image containing or not containing a 

whale, respectively. We use a ResNet-18 model that is pre-trained on the ImageNet dataset 

(Russakovsky et al. 2015) consisting of 1.28 million training images of 1000 classes. We modify 

the last layer of this model to train with our data, i.e., from outputting 1000 classes to outputting 

2 classes. Pre-training the model on ImageNet has been known to reduce overfitting and training 

time. 

Whales are inherently rare in imagery. The training architecture takes small batches of 

four images at a time and, given the rarity, would likely end up looking only at images of water 

much of the time, potentially creating an unreliable model. To overcome this, we implemented a 

weighted random sampler, which increases the probability that a whale image will appear in any 

given batch in proportion to the number of whale images in the overall training set. We used the 

set of images that were withheld from training to test the performance of each model. False 

positives and false negatives for each epoch were used to further tune model parameters and 

retrain models.  
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3.4 Results 

 

 

Image tiling took approximately 15 seconds per km² on an Nvidia Tesla K80 GPU, though 

this relationship is unlikely to be linear. Model training took approximately one hour depending 

on the training set on our hardware. Our best model trained for 24 epochs and used a learning 

rate set at 0.0009, with a step size (a parameter that allows the learning rate to decay after a 

certain number of epochs) of 7 epochs, and a momentum of 0.9. We found that a higher learning 

rate often resulted in overfitting on the training data, wherein the first epoch of the model would 

perform reasonably well on satellite imagery (~80% of whales found) but would decline rapidly 

in subsequent epochs. On the opposite end, a learning rate of 0.00001 resulted in no learning 

(Table 3.1).  

Table 3.1: Results of variation in learning rate (LR). 

Model Results Precision Recall 

LR = 0.0005 1.0000 0.7769 

LR = 0.0009 1.0000 0.9043 

LR = 0.0010 0.9990 0.7589 

LR = 0.0011 1.0000 0.4510 

LR = 0.0012 1.0000 0.7028 
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The standard measurement of performance in this case is precision, or the percent of 

positives (whale identifications) that are true positives, and recall, or the percent of whales that 

were found by the model. Precision was closely consistent among folds, ranging from 0.997 to 

0.999, with slightly higher variation in recall from 0.930 to 0.989, suggesting that there was a 

small variation among the training images in the folds that was affecting model performance 

(Table 3.2). Our trained model correctly identified all whales in the WorldView-3 imagery 

presented to it, and 90.4% of water (Table 3.2), for a false-positive rate of about 9.6% (water 

misclassified as whale) and a false negative rate of 0% (whales misclassified as water). 

Table 3.2 Results at the final epoch of 4-fold validation. 

 

  

 

 

 

 

 

 

3.5 Discussion 

 

 

Here we describe a functioning pipeline for identifying whales in high-resolution satellite 

imagery that can be immediately employed to reduce the time required to complete large-extent 

Aerial 

test 

fold 

N water 

training 

N 

whale 

training 

N 

water 

test 

N 

whale 

test 

Precision Recall 

1 9230 179 3076 60 0.9989 0.9304 

2 9230 179 3076 60 0.9970 0.9882 

3 9231 179 3076 60 0.9989 0.9648 

4 9229 180 3077 59 0.9983 0.9889 
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surveys. Like most machine learning applications, the model could be iteratively improved with 

the addition of correctly classified and verified whales from future imagery, and our current 

classification accuracy therefore represents a lower bound on the potential for satellite imagery 

to aid in cetacean surveys. As it stands, there is little open-water imagery available in 

DigitalGlobe’s archive of imagery as they do not collect continuously, instead tasking imagery 

collection for high-demand regions or in response to orders from customers. The current pricing 

structure for very high-resolution imagery would likely prevent many research applications from 

pursuing projects at basin-wide scales, but alternative pricing for non-profit organizations and 

education users is available. Encouraging the collection of open-water imagery in areas of 

interest and in areas of low competition is the first step in moving imagery-based methods to 

broad applicability. In the meantime, the pooling of aerial photographs with known ground-

sample distance by different research groups could result in a more robust training image set, and 

users with large catalogs of aerial imagery for their specific taxa and regions could create 

bespoke local training sets to better classify cetaceans in their region of interest. 

Given that our model is trained exclusively on minke whales, the smallest of the baleen 

whales, including more aerial photography of larger whale species would likely further improve 

performance. That said, it performed surprisingly well on whales that can reach double the size 

of a minke whale. The code could easily be modified to create overlapping tiles, which would 

eliminate problems arising from whales bisected by neighboring tiles. The addition of further 

classes representing objects such as boats, large ships, land, and rocks at the surface in the 

imagery would also help minimize the number of false positives in a cetacean survey. Such 

classes could be fine-tuned to the application at hand with training images added for the 

particular conditions found in a region, such as peculiar boat shapes or floating rafts of detritus.  
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Limitations inherent to this method are not dissimilar to those faced by any other survey 

methods. We did not attempt to use satellite imagery to locate whales in choppy water. 

Challenging sea-state conditions are common to boat- and aerial-based surveying (Barlow et al. 

2001; DeMaster et al. 2001; Teilmann 2003; Hodgson et al. 2013) because waves and sea spray 

create a lot of “noise” which makes it difficult to separate a whale from the surrounding water. 

The collection of imagery also hinges on cloud cover, and future applications will need to pair 

this detection pipeline with appropriate statistical models for non-detection (Kéry & Schmidt 

2008). Aside from environmental challenges, there are several satellites currently in orbit that 

could be used for cetacean surveying, such as previous iterations of WorldView and Pleiades. 

While this trained model may be robust to differences in spatial resolution among the various 

sensors available, we did not test imagery from other sensors. Sensor-specific models could 

easily be trained, as the aerial imagery can be down-sampled to any resolution desired. 

This method could be used to improve cetacean research in several different ways. It 

provides a means of viewing and monitoring areas that are far from ports or are hazardous to 

access, such as polar regions, remote island chains, or open ocean. Moreover, it provides the 

potential to monitor these areas at a daily time scale, cloud-cover permitting. With enough 

imagery, it could be used to monitor the arrival of migrating species or examine fine-scale 

changes in foraging activity. Long-term studies on whale feeding and breeding grounds have 

provided critical information on the ecology and behavior of these animals but are poorly suited 

to answer basin-scale questions for species that range widely both within and among seasons. 

The arrival time of migrating whales at traditional feeding grounds, for example, has been used 

to understand links between habitat use and local environmental conditions (Ramp et al. 2015), 

but is unable to illuminate the existence of unmonitored areas that may serve as alternative 
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feeding grounds. With the ability to rapidly and automatically detect whales in satellite imagery, 

boat or aerial surveys become valuable as ground-truthing rather than as the sole source of data 

on whale abundance and distribution, and researchers intent on instrumenting individuals or 

collecting individual-level data may be able to more accurately target their effort, saving time 

and expense. While far from a total replacement for other survey modalities, this method has 

promise to improve current survey methodology for large whales, increase the temporal 

resolution of surveys, expand the ocean surface area surveyed, minimize human risk, and 

increase the rate of data acquisition.  
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4 Eco-social sensors: Ecological opportunities in the era of 

camera ubiquity 
 

 

 

4.1 Abstract 

 

 

Expansive study areas, such as those used by highly-mobile species, provide numerous 

logistical challenges for researchers. Community science initiatives have been proposed as a 

means of overcoming some of these challenges but often suffer from low uptake or limited long-

term participation rates. Nevertheless, there are many places where the public has a much higher 

visitation rate than do field researchers. Here we demonstrate a passive means of collecting 

community science data by sourcing ecological image data from a public photo-sharing platform 

– Flickr – using freely available Python packages and simple applications of convolutional 

neural networks. Using the Weddell seal (Leptonychotes weddellii) on the Antarctic Peninsula as 

an example, we use these data with field survey data to demonstrate the viability of photo-

identification for this species, supplement traditional field studies to better understand patterns of 

habitat use, describe spatial and sex-specific signals in molt phenology, and examine behavioral 

differences between the Antarctic Peninsula’s Weddell seal population and better-studied 

populations in the species’ more southerly fast-ice habitat. While our analyses are unavoidably 

limited by the relatively small volume of imagery currently available, this pilot study 

demonstrates the utility of ad hoc wildlife photography, the value of geographic metadata for the 
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incorporation of such imagery into ecological analyses the remaining challenges of computer 

vision for ecological applications, and the viability of pelage patterns for use in individual 

recognition for this species.  

 

4.2 Introduction 

 

 

Marine mammals are highly mobile species that are inherently difficult to study, both 

because of the large spatial scales over which they interact with their environment, and because 

they spend the majority of their life underwater (Kaschner et al. 2012). Tracking studies of 

marine mammal movement are typically limited in sample size and this unavoidably constrains 

the types of questions that can be addressed (Sequeira et al. 2019). Surveys across vast 

landscapes are often expensive, requiring intensive dedicated field studies and large-scale 

collaborations, and frequently have lengthy intervals between visits (Calambokidis et al. 2001; 

e.g., Smith et al. 1999). Despite these challenges, understanding movement, habitat use, and 

connectivity at the scale of an individual’s range is important for making conservation decisions 

(Runge et al. 2014), and thus there is substantial value in developing new approaches to solve 

this long-standing problem in marine ecology. 

 The distribution and migratory pathways of numerous species of marine mammal are 

poorly understood, and marine species inhabit a complex three-dimensional space that is difficult 

to observe. Community science (also called citizen science or participatory science) has been 
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proposed as a means of crowd-sourcing the collection or analysis of data on marine mammal 

abundance, distribution, and habitat use (e.g., Cheeseman et al. 2017; LaRue et al. 2020), but this 

method also has some well-known challenges. Data quality is often raised as a shortcoming, 

though community-science projects can produce accurate datasets and should be assessed based 

on the specific details of each project’s design and goals (Kosmala et al. 2016). Arguably, a  

greater challenge to community science’s impact lies in the tiny fraction of the relevant 

population that formally participate in such projects; many more people encounter wildlife than 

can be motivated or trained to report or document them. This motivation gap makes it difficult to 

recruit community scientists and to keep them engaged over time (Nov et al. 2011) and creates 

an organizational barrier that can dissuade many professional researchers from setting up new 

projects. Here we explore the use of passively sourced images from the internet as a complement 

to both traditional field research and more formal community science efforts involving the active 

solicitation of data or analysis from the community. While passive collection of data misses the 

opportunity for sustained engagement with dedicated observers, it sidesteps the aforementioned 

motivation gap by capitalizing on people’s desire to share information with their peers online, 

requires no setup, and leverages the ubiquity of high quality GPS-enabled cameras in most 

feasible environments. 

 We illustrate the potential for opportunistic photographs posted online to provide useful 

ecological inference and develop a “web crawler” to locate and acquire images from online 

platforms, using the Weddell seal (Leptonychotes weddellii), a species with a circumpolar 

Antarctic distribution, as a case study. While Weddell seals have been well studied in other parts 

of their range (Stirling 1969; Testa & Siniff 1987; Castellini et al. 1992; Burns et al. 1999; 

Hückstӓdt et al. 2017), Weddell seal life history and spatial ecology on the Antarctic Peninsula 
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have received little attention to date. In continental Antarctica, Weddell seals are generally site-

faithful, likely due to their reliance on holes in the sea ice that they use to enter the water to 

forage, mate, and breathe and their use of the ice surface for resting, nursing, and molting 

(Stirling 1969; Croxall & Hiby 1983; Cameron & Siniff 2004). It is unclear whether Weddell 

seals on the Antarctic Peninsula and sub-Antarctic islands demonstrate site-fidelity when there is 

no breathing hole to maintain, though in winter, sea ice does accumulate in bays and fjords. The 

large and increasing numbers of tourists visiting the Antarctic Peninsula (68,000 in 2019/20; 

IAATO 2020) provides an opportunity to capitalize on photographs collected and posted online 

by Antarctic visitors as a means of better understanding Weddell seal biology in this region. 

Photo-identification (photo-ID), the use of natural markings to identify individual animals, is a 

widely-used technique for studying the biology and habitat use of a wide range of both marine 

(e.g., Katona & Whitehead 1981; Bigg 1982; Yochem et al. 1990; Speed et al. 2007) and 

terrestrial species (e.g., Kelly 2001). Several species of phocid seal have been shown to retain the 

patterns of spots or streaks on their pelage between years (e.g., Forcada & Robinson 2006; 

Patterson & Redman 2013; Koivuniemi et al. 2016), and to date no work has yet confirmed this 

occurrence in Weddell seals. 

By building an image catalog, photographs of Weddell seals can be used to assess both 

basic Weddell seal phenology and life-history diversity and their patterns of spatial habitat use. 

Here, we demonstrate the viability of Weddell seal pelage patterns for photo-ID and assess the 

utility of passively collecting community science data to supplement traditional field studies of 

Weddell seals. Further, we focus on three applications for images collected by biologists 

conducting field studies in the Antarctic Peninsula and internet-based photographic data from 

tourists visiting the region: (1) annual molting phenology and the potential for latitudinal 
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differences, (2) haul-out site fidelity, and (3) spatial sex segregation. Together these applications 

demonstrate an alternative and cost-effective method for crowdsourcing previously existing data 

on social media platforms and harnesses the widespread use of high-resolution digital cameras 

with GPS. 

 

4.3 Methods 

 

 

 

4.3.1 Study Species 

 
We demonstrate the applicability of this method using photographs of Weddell seals, a 

species frequently found in the regions of the Antarctic coast with fast ice, that is, permanent sea 

ice attached to land. Fast-ice regions are considered their primary habitat (Stirling 1969; Stirling 

1977; LaRue et al. 2019), though Weddell seals are also found outside of fast-ice habitat. The 

most notable examples are the Antarctic Peninsula (Fig. 4.1), which has only seasonal sea ice – 

often as pack ice (loosely aggregated sea ice) – and as far north as Larsen Harbour, South 

Georgia (55⁰ S; Vaughn 1968; Burton 2015), which has no regular sea ice. 
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Figure 4.1: Locations and extent of web-crawler geographic queries on the Antarctic Peninsula. 

Circles have a radius of 32 km from the numbered site. 
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4.3.2 Web crawler and automated detection 
 

We used an automated data-collection pipeline comprised of three stages: a web-crawler to 

locate and acquire publicly-shared images with relevant metadata such as location and date, a 

machine learning-based seal detector algorithm to remove images that are not seals and identify 

species, and a metadata scraper that isolates geo-tagged images (Fig. 4.2). Once manually 

verified, these images were added to photographs collected by scientists or actively submitted by 

community scientists to create a photo catalog ready for subsequent analysis. 
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Figure 4.2: The workflow. Text and search terms are fed to the 

web-crawler, which interacts with the platform API (in this case, 

Flickr) to find images. Once downloaded, images are fed to the 

trained classifier which separates images by species. A manual 

verification step fixes misclassifications, and manual annotations 

such as molt and sex can then be added to the output dataset. 
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We implemented the web-crawler, written with the Python package icrawler, to scrape 

data from Flickr (Chen 2017). This web-crawler uses text-based search terms associated with 

image metadata, limiting the volume of imagery to analyze from all images to only those tagged, 

titled, or otherwise annotated with search terms specific to the questions of interest. To create a 

manageable test set of images and given the limitations of the Flickr application programming 

interface (API), we selected 20 sites spread across the western Antarctic Peninsula as search 

centroids (Fig. 4.1; Table S1). For each site, the web crawler searched for images tagged with the 

word ‘seal’ with geotags situated within a 32-km radius of the site (the maximum search radius 

within the Flickr API), and within the date range of Oct. 1, 2004 to Apr. 1, 2019, which roughly 

corresponded to our field-collected dataset. While the search regions overlapped (Fig. 4.1), 

images were recorded with their unique filenames from Flickr, such that duplicate photographs 

from overlapping searches were not included twice. The workflow also includes capability to 

search for all images using only text tags and to eliminate those images without a geotag, 

suitable for a broad survey that would be difficult to accomplish by specifying a geographic 

search (e.g., ‘antarctica’ + ‘seal’). We used the search term ‘seal,’ which would capture seals of 

many species, rather than a more specific search term such as ‘Weddell seal’ so as to cast a wide 

net to avoid losing data due to misidentifications. 

The web-crawler application locates and downloads images. At this stage, a Python-

based image classifier determines whether the image contains a seal and then attempts to identify 

the species of seal. To build the classifier, we implemented two common convolutional neural 

network (CNN) model architectures, Resnet-50 (He et al. 2016) and Densenet-121 (Huang et al. 

2017) within the PyTorch framework (Paszke et al. 2019) to isolate the best model for this 

application. CNNs are computer vision models that use an objective function (e.g., cross-entropy 
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between predicted and ground-truth labels) to learn how to extract high-level representations of 

images that highlight important features. They then map those representations to class labels by 

learning from a set of labelled training images. Each of our models was trained on a training set 

of images annotated by experienced Antarctic seal researchers; images in which the species 

identification was ambiguous were excluded. A set of 4,261 images was used to train and 

validate the models. Further details of the CNN implementation can be found in Appendix A4.1 

The output of the classification stage is a pared-down dataset ideally free of irrelevant 

images, but we included a final visual verification step to ensure the integrity of the data and to 

remove any irrelevant images the classifier may have missed. Throughout this process, the 

individual images are not changed, and all EXIF metadata (image file metadata) remains 

associated with the image. The optional final stage of dataset creation looks through the 

remaining images to isolate those images with geographic metadata, information that is 

automatically recorded by a smartphone and often included by more traditional cameras as well. 

The remaining dataset consists of directory of images of seals for each category with geographic 

metadata, and a .csv file listing the filename, date, and coordinates of the image. 

4.3.3 Study Area 
 

Our analyses are based on two streams of Weddell seal photographs: (1) images taken by 

trained observers during field work, and (2) “web-crawled” images taken by other Antarctic 

visitors. All images were collected along the portions of the Antarctic Peninsula (Fig. 4.1) visited 

most frequently by commercial cruise vessels, notably its western coastline and associated 

islands. Most of this region has only seasonal fast-ice formation and has variable and drifting 

concentrations of pack ice during the summer. Pack- and fast-ice provide potential haul-out 



 

54 

 

locations for Weddell seals, but individuals also haul out on pebble, sand, and cobble beaches 

and on low-lying rock outcrops. 

4.3.4 Field Collection of Weddell Seal Images 
 

From Nov. 2015 to Mar. 2018, field biologists working on monitoring and research 

projects, along with a small number of Antarctic expedition guides, were asked to contribute 

photographs of Weddell seals, including images from prior field seasons. All researchers and 

guides were based on commercial tour vessels or occasionally on research expeditions around 

the Antarctic Peninsula and South Shetland Islands. Images were either associated with precise 

coordinates or assigned to a “site,” following the framework of other biodiversity mapping 

efforts on the Antarctic Peninsula that map seabird colonies to particular islands or beaches 

(Humphries et al. 2017). While this method of differentiating sites is not ideal for seals, which 

might be hauled out on ice floes or on islands or beaches without seabird colonies, most images 

mapped neatly onto named visitor sites or sites of continued penguin population monitoring (see 

Humphries et al. 2017) since Antarctic tourism is tightly regulated. For images with only site-

level geographic data, we grouped images under a single set of coordinates for the site, and for 

those with more precise geographic information, we retained those finer coordinates. 

4.3.5 Photo-Identification 
 

Photographs from both the web crawler and field collection were processed to enhance the 

natural patterns on the pelage, primarily by altering brightness and contrast. We focused photo-

identification efforts on the ventral region, as seals often lie on their side to sleep when hauled 

out (Fig. 4.3). While coat patterns are retained through molt, molt stage can impact the 

distinctiveness and visibility of the coat patterns, as old, worn fur can appear as one uniform gray 
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or tan color that makes it harder to match a photograph to other photographs in the catalog. For 

images in which the pre-molt stage (Fig. 4.3A) substantially diminished the visible pattern, we 

made an effort to find a match but, in the absence of a match, did not include the image in the 

catalog as a new individual. To ensure that images in the catalog could be reliably used as “type 

specimens,” we assigned images ratings of quality and distinctiveness (Appendix A4.2). Images 

that exceeded a score threshold of 8 out of 15 when summed across ratings were not included in 

the catalog. A lower standard was considered for images to be matched against the catalog in 

order to locate additional observations of a previously-identified seal (i.e., an individual already 

in the catalog). If no match was found, such lower-quality images were retained separately in 

order to compare against the catalog again after new images were added. Images were excluded 

from all analyses if the ventral region was obstructed, the angle was extreme enough to prevent a 

view of the pattern, or resolution or irretrievable glare/shadows made the pattern unclear 

(Appendix A4.2). 
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Figure 4.3: (A) A pre-molt individual showing heavy wear on the ventral surface. (B) A seal mid-molt. 

(C) A recently-molted individual. 
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Matching was completed manually by trained observers who either had prior photo-

identification experience from other taxa or who had completed a training program and test-set 

of images. Initial matching was completed without any software support but was later migrated 

to the Discovery program (Gailey & Karczmarski 2012) which provided database integration and 

a means of including relevant metadata. Each image was compared to the catalog by two 

observers unless a match was found, when it was then verified by A. Borowicz. In every case, 

matches were verified by two people to ensure agreement. 

 

4.3.6 Site Fidelity 
 

Weddell seals in the fast-ice regions of their range frequently show site fidelity (Stirling 

1969; Croxall & Hiby 1983; Cameron & Siniff 2004), though far less is known about site fidelity 

in areas without extensive or permanent fast ice. While our dataset does not yet contain enough 

records to map widespread movement along the Antarctic Peninsula, we were able to focus on 

two frequently-visited sites, Half Moon Island in the South Shetland Islands and Mikkelsen 

Harbour on Trinity Island (Fig. 4.1 Sites 1 and 7, respectively), given the popularity of these sites 

among tour operators. Together, these two sites hosted 24,517 passengers ashore in the 2018-19 

season alone (IAATO 2020). We examined images collected by scientists, sent directly to us by 

passengers, and those obtained from the web-crawler to examine the degree of site fidelity 

exhibited in this region.  

  We also used the combined image catalog to track individual seals as a means of 

understanding their movement over time. Re-sightings of individuals provide important 

information about the use of haul-out sites in the Antarctic Peninsula by Weddell seals through 
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the austral summer, particularly since the vast majority of haul-out sites in the Antarctic 

Peninsula have never been documented. This region is of particular interest, as it was excluded 

from a continent-wide remote-sensing survey for Weddell seals (LaRue et al. 2020), and thus 

remains poorly documented. Moreover, the potential prevalence of Weddell seals in non-fast-ice 

habitats is important to the understanding of population-level changes that might occur as ice 

habitats diminish with changing Southern Ocean climate dynamics (Siniff et al. 2008). 

4.3.7 Spatial Sex-Segregation 
 

As a simple example of the potential value of broad-scale image data, we also investigated 

spatial patterns of sex-segregation among Weddell seals. We annotated seal images based on sex, 

including an “unknown” category for those seals we were unable to rate. For this preliminary 

evaluation of differential sex distribution, we considered overall patterns based on latitude as 

well as the potential for individual haul-out sites to host different sex ratios of seals. We included 

all images of Weddell seals in this analysis, regardless of their suitability for photo-

identification. 

4.3.8 Molt Phenology 
 

To examine molt phenology in Weddell seal photographs, each image from both the photo-

identification catalog and the database of web-crawled images was qualitatively rated for molt 

progression as being (1) unmolted (having not yet started the molt process), (2) molting, or (3) 

fully molted (Fig. 4.3). Unmolted individuals were characterized by typically tan-brown 

(bleached) fur and indistinct patterning and occasionally showed heavy wear on their fur. 

Molting typically begins with the head, followed by a dorsal stripe, and the flanks (Beltran et al. 

2019). Fully molted individuals displayed clear patterning with more gray and white coloration. 
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Actively-molting individuals were those with some characteristics of both unmolted and fully 

molted seals. We excluded any image lacking a date or location, and also removed images for 

which molt stage was unclear or the individual was young-of-the-year. Given that one of the first 

areas to molt is generally a dorsal stripe (Beltran et al. 2019) which is frequently out of view in 

our photographs, it is possible that some individuals were categorized as unmolted, but had in 

fact begun the process. The overall pattern of timing, however, should be unaffected. 

As a preliminary means of exploring the potential drivers of molt phenology patterns, we 

considered all images (which allowed images with a timestamp but no geographic information to 

be used) and further separated images by sex and location. We then compared molt phenology 

within two regions of the Antarctic Peninsula, as a basic means of examining any link between 

latitude and phenology as has been indicated for other species within the Antarctic and without 

(Bonenfant et al. 2004; Herfindal et al. 2006; Lynch et al. 2012; McLean & Guralnick 2021). We 

subdivided the region into a northern component, including the South Shetland Islands and the 

Peninsula north of Trinity Island, and a Southern component, including the Peninsula and islands 

south of 63.5⁰ S latitude. Seals in the northern region have ready access to the deep water of the 

Bransfield Strait and, for seals in the South Shetland Islands, both the Strait and the relatively 

close shelf break to the north of the islands. In the southern region, the shelf break is 

considerably more distant, and the region is more likely to contain some sea ice into the summer.  
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4.4 Results 

 

 

 

4.4.1 Image Collection 
 

Across the 21 sites on the Antarctic Peninsula, our web search returned 978 images tagged 

‘seal’ (Appendix A4.3). While all of these images were returned from a search that explicitly 

required a geo-tag, only 458 images contained coordinates, suggesting that the other photographs 

were tagged with a location within Flickr and that this information was not written to the image 

metadata. Of those geo-tagged images, 149 were verified as containing a Weddell seal and were 

used in subsequent analyses (Fig. 4.4A). From our field-based efforts, we collected 148 Weddell 

seal images around the Antarctic Peninsula (Fig. 4.4A). 

 

  



 

61 

 

 

Figure 4.4: (A) Locations of field-collected and web-scraped Weddell seal images. (B) Longest 

within-season travel for an individual, from Jougla Point in the south to Mikkelsen Harbour in 

the north (167-km straight-line distance). 

A 

B
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Of the two classifiers evaluated, the ResNet-50-based classifier performed best, but 

required substantial verification. The overall recall of the model (true positives ÷ [true positives 

+ false negatives]) was 48.7%, while the precision (percent true positive out of all images 

labelled as positive) was 52.6% (Table 4.1). As a result, nearly half of all web-scraped images, in 

nearly all classes, had to be reclassified manually. 

 

Table 4.1: Precision and recall outcomes for different image classes from both CNN classifiers, 

and the overall weighted macro precision and recall for each model. 

 DenseNet-121 ResNet-50 

Class Precision Recall Precision Recall 

Crabeater 0.62 0.37 0.68 0.24 

Southern 

Elephant 

0.46 0.38 0.55 0.41 

Antarctic Fur 0.55 0.50 0.45 0.53 

Leopard 0.49 0.29 0.53 0.49 

Non-Seal 0.47 0.76 0.53 0.78 

Weddell 0.34 0.25 0.37 0.25 

Overall 

Weighted 

Macro 

0.49 0.47 0.53 0.49 

 

4.4.2 Photo-Identification 
 

From the 148 Weddell seal images collected during our field effort, we amassed a catalog 

of 96 individuals, 16 of which were resighted at least once.  After the manual verification of the 

CNN classifier, we examined the resulting 149 web-scraped Weddell seal images; seventy-two 
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did not meet the quality standards for photo-identification. Of the remaining 79 usable images, 

we determined that there were 41 unique seal sightings, increasing the size of our photo-ID 

catalog by 28% to 189 images. In several cases, multiple photographs had been taken 

concurrently of the same seal, and in others multiple seals appeared in a single photograph. In 

this scheme, two individuals within the same photograph are considered two sightings.  

4.4.3 Site Fidelity 
 

Our dataset from Half Moon Island (Fig. 4.1, site 1) comprised 15 seal sightings (Table 

4.2) collected between 2005 to 2015. At Mikkelsen Harbour (Fig. 4.1, site 7) our dataset 

consisted of 33 sightings (Table 4.1) from 2015 to 2019. At both sites, some individuals were re-

sighted in the same season and some in different years. At Half Moon Island, 7 individuals were 

seen only once, while the remaining 8 images were re-sightings at either Half Moon Island or at 

another site. Only 7 individuals at Mikkelsen Harbour were seen only once.  

Table 4.2: Images from two sites of focus for photo-identification. 

Site Images Field-

Collected 

Images Web-

Scraped 

Half Moon Island 12 3 

Mikkelsen Harbour 29 4 

 

While broad inference about travel and site fidelity within and among years at a large 

spatial scale will require further data collection, the data collected thus far provide an interesting 

preliminary view into Weddell seal movement. More than half of all individuals (Flickr and 

catalog; n=93 individuals) were photographed only once (65%; n=115), even at frequently 

visited sites. Eighteen individuals (13% of all individuals) accounted for all 51 re-sightings (i.e., 
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29% of photographs were re-sightings). Of those re-sightings, 13 individuals were resighted 

across different research seasons and 13 were resighted within the same research season. Overall, 

16 were resighted at the same site and only 8 individuals at different sites; only one individual 

was only resighted at a different site. 

Aside from re-sightings at the same location, the shortest within-season distance observed 

was 2.5 km (straight-line distance) from Mikkelsen Harbour to the Tetrad Islands, which 

occurred over four days. The longest within-season distance was 167 km over 5 days in 2019 

between Jougla Point and Mikkelsen Harbour (Fig. 4.4B). More interesting, perhaps, is another 

seal that made a 150-km trip between Mikkelsen Harbour (26 Dec 2015) and Half Moon Island 

(27 Dec 2015) over the course of one day (Appendix A4.4). This is notable both for the distance 

and speed, but also because a suggestive (but low-quality) image from Georges Point was taken 

the day before (25 Dec 2015). If the same individual, this seal would have made a further 125-

km trip from Georges Point to Mikkelsen Harbour. While that image does not meet our quality 

standards, it is a striking possibility because another seal was positively identified at both 

Georges Point and Mikkelsen Harbour on 25 and 26 Dec 2015, respectively (Appendix A4.4). 

The confirmed Mikkelsen-Half Moon sighting is also notable in that it is of the most frequently 

sighted individual in the catalog, seen 7 times between 2017 and 2019, though all other sightings 

are from Mikkelsen Harbour. 

Mikkelsen Harbour, a small bay on the southern shore of Trinity Island, was commonly 

used by resighted seals. Of seals seen in at least two different locations, all but one was observed 

at Mikkelsen Harbour at least once. While this could be an artifact of the popularity of this site 

with tour operators, and the resulting high number of photographs obtained from this site, 
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resighting rates were much lower at Half Moon Island, another frequently-visited site at which 

Weddell seals are nearly always present during the tourist season (Naveen & Lynch 2011). 

4.4.4 Sex Segregation 
 

 Of all 232 geo-tagged Weddell seal images from all sources (inclusive of images 

unsuitable for identification), 127 could be sexed (60 males, 67 females), while 105 could not be 

sexed (Fig. 4.5A). Broadly, seals were distributed evenly across a latitudinal gradient (Fig. 4.5B). 

Our results suggest a pattern of site-specific sex-segregation, though substantially more data are 

required to investigate this trend in more detail (Fig. 4.5C). Whaler’s Bay (Fig 4.1, site 3) and 

Half Moon Bay (Fig. 4.1, site 1), for example, showed a roughly 2:1 female-to-male ratio, while 

Mikkelsen Harbour and Neko Harbour (Fig. 4.1, sites 7 & 17) showed more even sex ratios, 

though we did not investigate the potential for different patterns to emerge in different years. 
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Figure 4.5: (A) Male/female distribution across the region. (B) Latitudinal distribution by sex. 

(C) Site-level sex ratios. 
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4.4.5 Molt Phenology 
 

We were able to rate molt stage for 169, or 73%, of the 232 geo-tagged images. The 

dataset included roughly similar numbers of images for each molt stage, with 57 unmolted seals, 

66 molting, and 46 fully molted. Their distribution across the season showed a clear seasonality 

to molt phenology (Fig. 4.6). While our observations of both the unmolted and fully-molted 

categories are necessarily curtailed by the challenges of navigating in early- and late-season sea 

ice and the bounds of the field season, the summary statistics from this work demonstrate 

seasonal patterns. The mean date of observations of seals in the molting stage was January 15 

(s.d. = 22 days), and the earliest date that a molting seal was observed was December 14. While 

the earliest date of an unmolted sighting and the latest day of a fully-molted sighting are artifacts 

of the start and end of the research and tourism seasons, the latest unmolted sighting (March 16) 

and earliest fully-molted sighting (January 25) give us some insight into temporal patterns of 

molt. The latest unmolted individual falls almost 3 standard deviations from the mean date of a 

molting sighting, which suggests that this individual may have had some underlying condition – 

whether related to disease or body condition – that prevented molt from beginning or delayed 

initiation. 
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Figure 4.6: The seasonal progression of Weddell seal molt. Histogram data in 12-day bins, and kernel density estimates for each 

stage. The northern region lies north of 63.5⁰ S while the southern region lies south of this latitude. 
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The northern region included 49 images in which molt stage could be rated, while the 

southern region included 120 images. The mean date of observations for molting seals was 

January 17 in the north, and January 14 in the south. The aforementioned late molter doesn’t 

allow us to make any meaningful inference about differences in timing for starting molt, but 

there was a gap of 11 days between the earliest date a seal was observed as fully-molted in the 

North (Jan 14; mean date of being molted = Feb 26, s.d. = 13 days) and South (Jan 25, mean = 

Mar 4, s.d. = 13 days), though the relatively fewer images associated with the northern sector 

essentially make this gap between dates unreliable (Student’s t-test for difference in mean date: 

𝑡 = 1.721, 𝑑𝑓 = 40.05, 𝑝 = 0.093). 

 

4.5 Discussion 

 

 

 

 ‘Traditional’ community science has produced valuable insights by radically expanding 

the scope of data collection in some applications (e.g., Lodi & Tardin 2018; Poisson et al. 2020) 

and has, as an additional benefit, promoted science knowledge and data literacy among 

participants (Cronje et al. 2011; Jordan et al. 2011; Haywood 2015; Dean et al. 2018). However, 

the active solicitation of data from the public is not well-suited to all applications and is only one 

possible means of engaging non-scientists in data collection. For better or worse, members of the 

public are consistently pressed into service as unwitting sensors, providing passive data on traffic 

conditions, patterns of movement, and commercial behaviors (Baruh & Popescu 2015). 

Meanwhile, they intentionally share other information with their friends, family, and the public 
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at large, at the scale of 4 million Flickr posts and more than 100 million Instagram posts per day 

(Thornley-Brown 2019; Aslam 2020). While the former data stream is fraught with complexities 

surrounding privacy and choice, the latter provides an opportunity for the public and planet to 

benefit from data that are already being intentionally and willingly shared online. 

 Here we have used Flickr, a photography-sharing website hosting tens of billions of 

photographs, to gain insight into one species, the Weddell seal, at its range limits and in one of 

the most remote regions of the world. Using freely-available Python packages, we have collected 

image data from the Antarctic Peninsula, classified images to the species level, and extracted 

basic geographic and temporal information. While the images often do not meet the standards we 

typically set for fieldwork, they provide an ancillary data stream beyond what our field team is 

able to produce.  

 Even with a limited dataset from both field expeditions and tourist photographs, we have 

demonstrated the viability of photo-identification in this species for the first time and have 

identified several patterns of interest for further, targeted investigation. While Weddell seals in 

more southerly fast-ice habitats are site-faithful to breathing holes (Stirling 1969; Croxall & 

Hiby 1983; Cameron & Siniff 2004), there is less obvious need for such a behavior in the 

perennially ice-free regions of the Antarctic Peninsula. Nevertheless, we have demonstrated that 

these seals are regularly seen both within and among seasons at the same site. At the same time, 

we have documented long-distance travel in the same species. The degree to which site-fidelity 

is plastic among or within seals is worth further investigation. Even aside from these patterns, 

leveraging photo-sharing platforms has allowed us to create a rough distributional map of all seal 

species on the Antarctic Peninsula (Appendix A4.5). A field program to collect even these rough 

presence-only data with the level of detail demonstrated here would be logistically infeasible. 
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 As for sex-segregation, there is evidence for substantial segregation among other 

Antarctic pinnipeds (Santora 2013). Physiological needs for a post-partum female and a post-

mating male are likely different, which could drive sex-specific habitat use during and after the 

mating season (Beltran 2018). Our preliminary examination of sex-based patterns of distribution 

did not suggest a robust latitudinal trend, though the small sample size limits our inference. We 

were unable to sex nearly half of the seal images, though our inability was largely due to 

physical obstructions or photography than to anything specific to the seal being photographed. 

As a result, unsexed individuals are, given the evidence available, missing at random. At the 

scale of individual sites however, there is some evidence that males and females prefer different 

haul-outs, and perhaps different foraging grounds. More dedicated effort monitoring these sites 

within seasons would demonstrate whether patterns of sex segregation are random, permanent, or 

shift over the season. 

 Notably, January 15 was the mean of the dates in which we recorded a visibly-molting 

seal, the same date that Beltran et al. (2019) assess as the mean molt initiation date in the 

McMurdo Sound area, a region at a much higher latitude and with a more extreme fast-ice 

climate. Because the period over which one can observe a molting seal is longer than the period 

over which one can observe the initiation of molt, these findings suggest that molt may initiate 

earlier for Weddell seals on the Antarctic Peninsula than for those further south, which would 

align with the suggestion that molt timing is linked to ambient conditions as seals’ 

thermoregulatory costs associated with molting are roughly double those prior to the onset of 

molting (Walcott et al. 2020). The climate of the Antarctic Peninsula is notably warmer than that 

of the Ross Sea however, where Beltran et al. (2019) and Walcott et al. (2020) based their 

research, so it is unclear the degree to which thermoregulatory cost-saving is an important driver 
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of phenology in the Antarctic Peninsula region. Our first observation of a molting individual 

however, December 14, is close to but later than the observed earliest molt-initiation date from 

Beltran et al. (2019). It is possible that this is an artifact of the small sample size and inconsistent 

effort, but this could also suggest that phenology is less clearly defined on the Peninsula than in 

other regions. More consistent sampling, especially in areas with consistent Weddell seal 

presence, would resolve this question. 

 This underlying question of the linkage between behavioral and phenological responses 

both in extreme environments (such as the fast-ice habitat of McMurdo Sound and the Ross Sea) 

and in less-extreme environments (such as the ice-free regions of the Antarctic Peninsula), 

deserves somewhat more attention, given the possibility of warming temperatures in many polar 

environments due to anthropogenic global climate change. The phenological and behavioral 

differences between McMurdo Sound Weddell seals and their more northerly Antarctic 

Peninsula cousins could provide insight into the ability of Weddell seals and other Antarctic 

pinnipeds to adapt to changing physical conditions in their respective environments. What little 

evidence we have suggests that diminishing sea ice in the Antarctic Peninsula region could result 

in migration or population decline (Siniff et al. 2008). 

 While our implementation of a ResNet CNN was minimally helpful, requiring substantial 

manual intervention to achieve a reliable dataset, such classification algorithms would likely be 

more successful with other study species. Phocid seals have broadly similar body plans, which 

we expect made differentiating between species challenging. More training data would likely 

alleviate some of this problem and improve the model performance, though the classification 

problem is challenging and an area ripe with opportunities for the computer vision community. 

Images from tourists come from many different angles, distances, and lighting conditions, and 
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the cues used by biologists and naturalists to identify a seal on an ice floe from a distance may be 

subtle. The characteristic body shape of a seal species may be visible to an observer who can 

deduce how a seal is angled and rolled, but an algorithm is naïve to the third-dimensional 

characteristics of an image; body position, roll, and the blubber layer combine to create a 

deformable surfaces problem.  

 ResNet correctly classified roughly half of our images but also missed half. Those mis-

classified images were fairly evenly distributed across the major classes of image with some 

exceptions. Antarctic fur seals and Southern elephant seals are both abundant in the South 

Shetland Islands (Hucke-Gaete et al. 2004; Gil-Delgado et al. 2012), especially in several well-

visited areas with unique orange-tinted rocks. The misclassification of several landscape 

photographs as these seals, and of fur seals as elephant seals, suggests that the algorithm may 

have cued on the color values more than the shapes of the seals. On the other hand, of Antarctic 

seals, elephant and fur seals are the only two species to regularly position their bodies upright, 

another potential area of confusion. In a two-dimensional sense, a Weddell seal occupies a form 

that many of the other seal species included could adopt and this could explain why the Weddell 

seal class had the lowest precision among the classes (Table 4.1).  Where CNN performance is 

concerned, the answer is nearly always more training data. 

 For species with more distinct shapes or coloration, a paired web-crawler/classification 

algorithm approach will likely be very successful at differentiating a study species from the other 

photographs of a region available on photo-sharing websites. Areas such as national parks have 

far more visitors than biologists and many tourists are focused on wildlife at these locations. For 

example, Flickr hosts over 10,000 geo-tagged images labelled ‘elk,’ and over 29,000 labelled 

‘buffalo’ or ‘bison.’ While small, timid, or nocturnal species may not be a good fit for this 
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approach, megafauna would be ideal candidates. A combined approach of fieldwork and the 

shared data of wildlife enthusiasts as passive “citizen sensors” has the opportunity to 

dramatically increase the size of ecological datasets, at the expense of some data quality. We are 

heartened by the fact that such an approach can work in the Antarctic, which suggests areas with 

higher volumes of visitation may have even more success with such a method.  
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5 Spatial & temporal use patterns of Antarctic  

         fur seals (Arctocephalus gazella) on the  

Antarctic Peninsula 

 
 

 

5.1 Abstract 

 

Following extirpation from the Antarctic Peninsula in the 1820s, and exhaustive hunting in 

South Georgia, the Antarctic fur seal (Arctocephalus gazella) has experienced a dramatic 

recovery in the 20th and 21st centuries. However, this recovery appears to have been driven 

largely by the breeding population on South Georgia, which appears to have recovered beyond 

its historic baseline. In contrast, the Antarctic Peninsula’s population remains nearly an order of 

magnitude below the abundance just prior to the sealing era. Here we examine the current state 

of knowledge of fur seals around the Antarctic Peninsula and, using field survey data alongside 

data sourced from social media records of Antarctic tourist encounters, try to synthesize the 

spatiotemporal patterns and drivers of fur seal distributions on the Peninsula. Surveys across the 

region and supporting community-science evidence demonstrate that site-wise fur seal 

abundance has not noticeably increased in the last 25 years, but that seals – and especially males 

and subadults – disperse widely in the region following the breeding season. We describe the 

remaining gaps in our knowledge and the questions of relevance to management decision-

making and regional ecology. 
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5.2 Introduction 

 

 

Among species driven to near-extinction, the Antarctic fur seal (Arctocephalus gazella) is 

one of few examples of robust recovery, and one of fewer that have recovered without 

substantial intervention beyond the cessation of direct hunting. On South Georgia, where fur 

seals were hunted from the 18th to 20th centuries, there is evidence that the population has 

reached a level similar to its pre-exploitation abundance (Boyd 1993; Hodgson et al. 1997), 

though more recent estimates provide evidence to the contrary (e.g., Foley & Lynch 2020). On 

the Antarctic Peninsula only one breeding colony, at Cape Shirreff on Livingston Island, has 

recovered to a substantial degree. 

Recovery at Cape Shirreff has been rapid, with only 11 individuals reported in 1959 but 

around 20,000 in the early 2000s (O’Gorman 1961; Hucke-Gaete et al. 2004), though the most 

recent estimates suggest a population that remains an order of magnitude lower than that prior to 

exploitation (Hucke-Gaete et al. 2004). At Bird Island on South Georgia, pup production was 

around 10,000 pups per year in the 1960s and approximately 90,000 in the mid-1970s (Payne 

1977). Over that period, the population growth rate actually slowed, declining from 16.8% yr-1 

(Payne 1977) from the 1950s through the early 1970s to 9.8% yr-1 from the 1970s through 1990s 

(Boyd 1993). Current estimates suggest a population of around 2.5 million females overall on 

South Georgia (Foley 2019) that continues to expand to new areas of the island (Trathan et al. 

2012). Previous estimates of the South Georgia population suggest an abundance of 3 million 

(Barlow et al. 2002) or 4.5-6.2 million individuals in 1999 (Hofmeyr 2016). Bird Island, the site 
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of the most regular fur seal research in South Georgia, hosts a population of around 100,000 

individuals (Barlow et al. 2002), though this population appears to be in decline (Forcada & 

Hoffman 2014).  

At a broader scale, rapid population recovery of such an abundant marine predator, following 

over a century of exploitation, may combine with anthropogenic climate change to effect 

important shifts in the region’s food web. At South Georgia, during population growth in the 

1970s fur seals were establishing new breeding colonies on less-populated beaches (Payne 

1977). More recently there is evidence that South Georgia fur seals are now out-competing 

Macaroni penguins (Eudyptes chrysolophus) for Antarctic krill (Euphausia superba), a key prey 

species across the Southern Ocean (Barlow et al. 2002). Under a changing Antarctic climate, 

disruptions to krill production are likely to be more common, and in years of low krill 

abundance, such competition may depress reproduction or survival among other krill predators.  

The abundance and distribution of Antarctic fur seals across the Antarctic Peninsula region is 

not well understood outside of the breeding colonies in the Cape Shirreff region. But fur seals 

have the potential to be important predators in the region, with substantial dietary overlap with 

penguins, whales, seals, and other taxa. Antarctic fur seals appear to be more generalist predators 

than some species in the region, but across most of the Antarctic Peninsula, appear to favor krill 

(Casaux et al. 2003a, 2003b; Garcia-Garin 2020). Some regional or geographic variation is 

evident however, with fish such as myctophids playing an important role in diet in some areas 

(Casaux et al. 1998; Casaux et al. 2003a). Notably however, the lack of studies considering diet 

across the region means that the geographic differences evident from point studies in different 

decades could be driven by changes in prey availability among years rather than clear differences 

in diet among areas. In the South Shetland Islands for example, two studies separated by three 
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years found fish and krill to be most important, respectively (Casaux et al. 1998; Casaux et al. 

2003a). Regardless of temporal or spatial variation, overlap with other predators is clear, and a 

clearer understanding of the use of the region by Antarctic fur seals is important to determine the 

interactions among species and the potential effects of seasonal immigration in the system on 

their populations. 

5.2.1 A brief review of the Antarctic fur seal around the Antarctic Peninsula 
 

 The history of the Antarctic fur seal is closely tied to the early exploration of Antarctica, 

with commercial sealers arriving in the South Shetland Islands in 1819. This period of sealing 

lasted only a few short years before fur seals were largely extirpated from the region, with nearly 

100 ships collecting over 320000 fur seal pelts (O’Gorman 1961). Further sealing in the 1870s 

effectively destroyed the colonies that were in the process of reestablishment, though the period 

between then and more concerted scientific expeditions in the 1920s is rife with unreliable 

narratives (O’Gorman 1961).  

Those early surveys of the Antarctic Peninsula demonstrate the scale of recovery in the 

current era. Expeditions between the 1920s and 1950s did not report any fur seals, and a study at 

Cape Shirreff, Livingston Island in 1959 documented only 10 individuals, including only one 

breeding female with a pup (O’Gorman 1961). In 1965-66, a wide-ranging coastal survey of the 

South Shetland Islands and part of the northern Antarctic Peninsula discovered Antarctic fur 

seals only on Livingston Island (~ 200 individuals) and the Elephant Island group (~ 250 

individuals), though both islands included small breeding populations (Aguayo & Torres 1967). 

By 1972-73, the observed population at Livingston Island had risen to over 3000 individuals, 
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including some 400 at King George Island (first recorded in 1969-70), such that the over 6000 

total individuals were censused in the region (Aguayo 1978). 

In the 1980s, the population continued to rise and to expand to new haul-outs and breeding 

beaches in the region. Fur seals were first reported at Deception Island only in 1986-87, at which 

point there were over 500 males, but no females, observed (Bengtson et al. 1990). The 

Livingston Island population had increased to over 11000 individuals around this time, including 

nearly 3000 pups (Bengtson et al. 1990). The most recent estimates from Cape Shirreff place this 

population around 20000 individuals (Hucke-Gaete et al. 2004), though declining pup production 

over the last 15 years (~ 1200 pups in 2010/11; Goebel et al. 2011) suggests that the overall 

population may have declined. 

 Without detailed data on abundance and distribution, it is challenging to infer the 

mechanisms by which the population grew during those time periods. As there are no other 

documented source populations on the Antarctic Peninsula from that era, and given that Cape 

Shirreff remains the largest breeding population in the region by far, it is reasonable that such 

increases may be the result of rapid intrinsic growth plus a large pulse of immigrants or migrants 

from South Georgia.  

Current evidence for potential broad-ranging dispersal (e.g., Boyd et al. 1998; Arthur et al. 

2017; Lowther et al. 2020; Bester 2021) supports the idea that immigration from South Georgia 

and elsewhere could have spurred resurgence among colonies in the South Shetlands. Genetic 

evidence provides a different story however, with distinct populations detected for the South 

Shetland Islands, South Georgia, and Bouvet Island to the east (Humble et al. 2018). While this 

suggests that the recovery seen in different localities is primarily a product of reproduction rather 
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than immigration, there is some evidence for limited gene flow to the South Shetland Islands 

from South Georgia (Bonin 2012; Hoffman et al. 2018; Humble et al. 2018). 

While Antarctic fur seals amass in the tens of thousands on beaches during the breeding 

season, they disperse widely in other seasons (Santora 2013; Arthur et al. 2017; Hinke et al. 

2017a; Lowther et al. 2020). Fur seals are income breeders, which limits the travel of lactating 

females during this season to foraging grounds close to their colonies (Boyd et al. 2002). As 

harem breeders however, most males are not successful at mating, and so are released from 

colony attendance at some point (Arnould & Duck 1997), though even successful males abandon 

the colony earlier than females who must still attend pups (McCann 1980). This difference in 

reproductive activity leads to potentially broad differences in post-breeding dispersal, such that 

males and females interact with different environments and different communities. 

Female fur seals at Cape Shirreff have been documented at winter foraging grounds near the 

South Orkney Islands and offshore of the Chilean coast, demonstrating a potential winter 

foraging range of thousands of kilometers (Arthur et al. 2017) while, conversely, there is 

evidence that male fur seals from South Georgia and the South Orkney Islands make a reverse 

trip, travelling south to the Antarctic Peninsula (Santora 2013; Lowther et al. 2020). Such wide-

ranging dispersal allows disparate populations to come into contact, with potential intraspecific 

dynamics that are unrelated to within-population demographics. Around the Antarctic Peninsula, 

for example, an influx of subadults and adult males from South Georgia in late summer (Santora 

2013) potentially coincides with the period in which female fur seals from local colonies are 

rebuilding energy stores post-weaning, though tracking studies (e.g., Arthur et al. 2017; Hinke et 

al. 2017a; Lowther et al. 2020) suggest that the foraging distributions of these two groups may 
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not overlap spatially to a significant degree. Further interspecific competition can arise since 

pygoscelid penguins are simultaneously provisioning their chicks in the region. 

While breeding populations may be largely distinct, populations do regularly overlap at the 

regional scale outside of the breeding season, when individuals disperse to winter foraging 

grounds. For example, females from South Georgia frequently remain near the continental shelf 

of the island (Boyd et al. 1998; Staniland et al. 2012) and, while females from Cape Shirreff have 

a wide range of potential winter foraging grounds, some of these individuals also travel to South 

Georgia, especially as more southerly foraging grounds are occluded by winter sea ice (Arthur et 

al. 2017). While there is extreme natal philopatry for breeding sites among female Antarctic fur 

seals, at least some individuals also have strong preference for foraging sites as well, creating the 

potential for regular overlap among populations (Arthur et al. 2015).  

This potential overlap during the non-breeding seasons introduces the potential for highly-

local environmental factors in foraging grounds to drive similar population trends in subsets of 

distinct breeding populations. Most studies of foraging and dispersal however have focused on 

female movements, but an increase in the at-sea abundance of male fur seals around the 

Antarctic Peninsula in late summer (Santora 1998) suggests that the dispersal of non-breeding or 

post-breeding fur seals from other populations could overlap with the local foraging grounds of 

lactating females from the South Shetland Islands. Indeed, while many instrumented males from 

the South Orkney Islands used the waters south of the South Shetland Islands, some were 

recorded in the waters north of Cape Shirreff (Lowther et al. 2020). Regardless of potential 

foraging overlap among disparate fur seal populations, there is clear overlap among these seals 

and other local krill predators such as penguins (e.g., Kokubun et al. 2010 Miller et al. 2010; 

Korczak-Abshire et al. 2021), crabeater seals (Lobodon carcinophaga; Burns et al. 2004) and 
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baleen whales (e.g., Dalla Rosa et al. 2008; Secchi et al. 2011; Johnston et al. 2012) The lack of 

a broad survey effort across the Antarctic Peninsula and South Shetland Islands limits our ability 

to understand the ecological significance of Antarctic fur seal movement, seasonal immigration, 

and resource use and the wider implications for conservation and management in this changing 

region. 

To begin to address this lack of survey effort and to understand how and wherethe dynamics 

of Antarctic fur seals use the broaderon the Antarctic Peninsula, we review the state of 

knowledge surrounding their movements and habitat use in the region, with a particular focus on 

spatial and temporal trends in distribution and site-wise abundance since the 1990s inferred 

through an examination of multiple data sources. These include 1) seal sightings obtained from 

scientific surveys; 2) georeferenced tourist photographs posted to Flickr; and 3) records from the 

iNaturalist observation platform filed with the Global Biodiversity Information Facility (GBIF).  

Our exploratory examination was structured to address three key questions: 1) Do the 

observed occurrences of Antarctic fur seals in the Antarctic Peninsula region reflect population-

dynamic patterns seen at breeding colonies in Antarctica or South Georgia?  Has the abundance 

of Antarctic fur seals in the Antarctic Peninsula region increased over the study period, similar to 

increases observed on South Georgia?; 2) Has the summertime geographic distribution of fur 

seals changed on the Peninsula?; and 3) Are there clear patterns of Antarctic fur seal distribution 

in space and time on the Peninsula? 
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5.3 Methods 

 

 

5.3.1 Data 
 

We used three datasets to examine the spatiotemporal distribution of Antarctic fur seals 

around the Antarctic Peninsula and to identify data gaps for future assessments. Records from 

field surveys conducted as part of the Antarctic Site Inventory (ASI; Naveen & Lynch 2011) or 

following ASI protocols contained fields indicating fur seal presence, and a field to provide 

notes. In some cases, these notes contained specific counts of fur seals and in others estimates 

such as “hundreds” or “more than 100.” Field surveys (𝑛 = 2055) were conducted from 1994-

2020 and each record corresponds to a Pygoscelis spp. penguin nesting colony (or suspected 

colony) or an Antarctic shag (Leucocarbo bransfieldensis) nesting colony. Sites were visited 

during the seabird nesting season, which runs from October through March, but were primarily 

visited on an opportunistic basis by researchers working off passenger cruise ships. As a result, 

some sites have many records and other, more remote or less popular sites have few or no 

records. Within the ASI data, we considered both presence/absence and abundance. More 

records contain observations of presence/absence (𝑛 = 266) than of abundance (𝑛 = 135). 

 A presence-only dataset was also collected from publicly-available tourist photographs 

posted to Flickr. Following Borowicz et al. (2021), the Flickr Application Programming 

Interface was queried with the term “seal” and a radial geographic search parameter that captured 

most of the Antarctic Peninsula visited by tourists and yielded only images with geographic 

metadata (all images: 𝑛 = 984). Once records were located, the corresponding images were 
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downloaded and classified using a convolutional neural network to separate images containing 

different species (Borowicz et al. 2021). A final manual check corrected misclassifications, and 

the relevant metadata – including species and location – was recorded in a dataset (fur seal 

images: 𝑛 = 98). 

 A second presence-only dataset was collected from the Global Biodiversity Information 

Facility (GBIF 2021). GBIF aggregates data from a variety of sources, and in the Antarctic, most 

records of fur seal presence are collected from iNaturalist, a citizen-science platform in which 

users can photograph organisms and upload them to the platform, where a community of 

knowledgeable users attempt to identify the species. We collected a dataset of only iNaturalist 

observations (𝑛 = 1782), excluding all observations from other sources. Only records of 

Antarctic fur seals for which, at a minimum, two users had agreed on the species, and overall two 

thirds of identifications agreed, were considered evidence of presence in the data aggregated by 

GBIF (iNaturalist 2021; 𝑛 = 72). 

Both GBIF and Flickr data cannot be easily corrected for effort, and any increase across 

years could be a function of increased adoption of those platforms by users, rather than an 

increase in abundance. These data are more suited to assessing phenology by collapsing the data 

across years. 

5.3.2 Presence 
 

The Antarctic Site Inventory dataset is the most comprehensive source of data available 

for the distribution of fur seals in the Antarctic Peninsula region and it includes records in which 

no seals were recorded. Such absence data are difficult to infer from databases like GBIF, which 

include only records of presence. Using these presence/absence data, we modeled a crude 
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encounter rate using logistic regression estimated in a Bayesian framework and implemented 

with Stan (Stan Development Team 2021). In this model, 

𝑌𝑖~𝐵𝑒𝑟𝑛(𝑝𝑖) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛼 + 𝛽1 × 𝑌𝑒𝑎𝑟𝑖 + 𝛽2 × 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖 + 𝛽3 × 𝑊𝑒𝑒𝑘𝑖 

where 𝑌𝑖 represent the presence or absence of seals at a site visit (0 = 𝑎𝑏𝑠𝑒𝑛𝑐𝑒, 1 = 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒), 

and the probability of presence 𝑝𝑖 is modeled as a function of Year, Latitude, and Week. Here we 

consider Year to be a ‘seasonal’ year, such that the year 2004 would encompass the months of 

Nov. and Dec. in calendar year 2004, as well as Jan., Feb., and Mar. in calendar year 2005, and 

Week as the number of weeks since the first week of January. Repeated observations of a site 

within a season are considered independent observations. Priors for the 𝛼 and 𝛽 terms were 

uninformative Normal. 

To validate our observations about encounter probability, we also examined the basic 

encounter rate from iNaturalist observations and Flickr images. We parameterized this model 

identically to the ASI model, but excluded Year as a covariate, since the volume of iNaturalist 

observations uploaded to the site has approximately doubled each year since the platform’s 

launch (iNaturalist 2020), and similar changes in Flickr user effort are likely to confound 

temporal trends without a robust detection model.  

While the timeframe associated with iNaturalist data is roughly similar to the survey 

dataset (first record: 1989), the iNaturalist platform was not created until 2008, such that these 

earlier records were added retroactively rather than uploaded in real or near-real time. To 

investigate whether these observations might be biased, we considered two variables: latitude 

and user. If iNaturalist photographs are primarily uploaded by tourists, early images with more 
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restricted geographies might indicate that they came from Antarctic scientists, who might be 

biased toward certain geographies or species. Likewise, if most images were uploaded by only 

one or several users, those users’ personal biases might have an undue influence on the data. 

While there was some difference between the spatial distribution of observations before 

and after 2008 (Fig. 5.1A), the pre-2009 images were heavily skewed toward a single user (Fig. 

5.1B). We elected to remove that entire period to ensure some level of data integrity by adhering 

only to the period in which users could upload in real time. 
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Figure 5.1: Assessment of the iNaturalist dataset. A) Latitudinal distribution of Antarctic uploads over time. Colors denote different 

families of taxa. Black dots represent fur seals. B) Per-user contribution of pre-2009 photographs (Users denoted by numbers). One 

user is responsible for most images prior to 2009. 
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5.3.3 Site-wise Abundance 
 

Not all records contain abundance estimates for fur seals, and some contain rough 

estimates (e.g., ‘more than 100’). In the case of a record of ‘more than’ some number, we 

included that lower bound as the abundance. Where the record contained a range (e.g., ‘10-12 fur 

seals’) we took the mean (11). We excluded records indicating ‘many fur seals’ or a similar, non-

quantitative statement from abundance estimates. In the case of entries with ‘a few’ or ‘a couple’ 

of fur seals, we assumed that these estimates were 2 or 3 seals. For records in which absence was 

explicitly stated, we recorded abundance as 0 which provided some information about absences. 

Because the abundance data were over-dispersed (mean =  60.8; s.d. =  228), we first 

modelled abundance using the Negative Binomial distribution. This model was unable to capture 

the large number of observations in which seal abundance was very small (< 5 individuals). 

Instead, we found modelling abundance using a Gamma distribution, as:  

𝑌𝑖~𝐺𝑎𝑚𝑚𝑎 (𝑠ℎ𝑎𝑝𝑒,
𝑠ℎ𝑎𝑝𝑒

𝜆𝑖
) 

log (𝜆𝑖) = α + 𝛽1𝑌𝑒𝑎𝑟𝑖 + 𝛽2𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖 + 𝛽3𝐷𝑎𝑦𝑖 

was a better fit to the observations. In this model, 𝑌𝑖 represents the number of fur seals observed 

in the 𝑖𝑡ℎ site visit. We used weakly informative Normal priors for 𝛼 and for each 𝛽 coefficient, 

and an uninformative exponential prior for the shape parameter. We estimated model posteriors 

using the last 1000 of 2000 samples across each of 4 chains implemented in Stan (Stan 

Development Team 2021).  
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5.3.4 Sentinel-species Comparison 
 

Given the frequent use of Adélie penguins as sentinels of change in the Southern Ocean 

(Miller & Davis 1993; Ainley 2002; Boersma 2008) and similar diets among fur seals and 

Pygoscelis spp. penguins in the Antarctic Peninsula region, we compared the encounter rate from 

the ASI data with an estimated reproductive index for Adélie penguins modelled primarily from 

ASI site surveys. The goal of this analysis was to understand whether this species, already well-

observed, could act as a useful proxy for fur seal habitat use. For this analysis, we collapsed the 

data into wide regions: the South Shetland Islands (including all islands north of the Bransfield 

Strait), the Northeast Antarctic Peninsula (which includes the northern tip of the Peninsula, its 

associated islands, and all colonies on the eastern side of the Peninsula), the Central-west (which 

includes all sites on the western side of the Peninsula south to approximately 65⁰S), and the 

Southwest (all sites south of 65⁰S). To investigate whether declines in Adélie penguins might co-

occur with fur seal declines, we modelled their relationship with a simple Bayesian linear 

regression implemented in Stan (Stan Development Team 2021), both for each region 

independently and for the entire Peninsula. 
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5.4 Results 

 

 

 

5.4.1 Data 
 

Overall, the Antarctic Site Inventory data contained 2058 survey records across 242 sites and 

provided 266 records of presence (13% of records). There were 135 records (7%) that also 

contained an explicit abundance estimate, or 869 records (92%) when considering pseudo-

absences as a 0 abundance estimate. Fur seals were recorded in every year from 1995-2020. 

There were 96 sites (40%) that had at least one record of fur seal presence, 56 sites (23%) that 

had at least one abundance estimate, or 217 sites (90%) including pseudo-absence abundance.  

 We included 1331 records from iNaturalist, which comprised 71 species from 2009-2020. 

Of these, 47 (4%) were records of Antarctic fur seals. After excluding records without date or 

location data, the Flickr dataset included 458 records, of which 61 (13%) included fur seals.  

5.4.2 Presence 
 

There was only a weak positive relationship between fur seal encounter rate and year (Fig. 5.2A) 

in our survey-based model, but a strong relationship with seasonality (Fig 5.2C), such that 

probability of encountering a fur seal increased substantially later in the season (Table 5.1). 

While the 95% credible intervals for the Year parameter do not include zero, they are only 

fractionally above. Encounters were also more likely in northern than southern latitudes, 
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especially at the latitudes of the South Shetland Islands (Fig. 5.2 B). Posterior distributions (Fig. 

A5.1) and posterior chains (Fig. A5.2) are provided in Appendix A5.1. 

 

Table 5.1: Estimates and 95% credible intervals for 𝛽 parameters in each logistic model. 

Covariate Survey Data Model Community Data 

Model 

Intercept −7.88 (−50.98, 36.13) 9.92 (1.12, 19.33) 

Year 0.03 (0.00, 0.05) NA 

Latitude 0.87 (0.74, 1.00) 0.21 (0.07, 0.36) 

Week 0.37 (0.32, 0.42) 0.23 (0.19, 0.28) 
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Figure 5.2: Posterior estimates and Bayesian credible intervals of the logistic model. 

The northern and southern regions separate sites north and south of -64⁰S. The northern 

region encompasses the South Shetland Islands and a small amount of the Antarctic 

Peninsula. 

A 

B 
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Using the combined Flickr and iNaturalist data and repeating the same procedure, we 

arrived at slightly different parameter estimates. For Week and Latitude, the effect on encounter 

rate was positive, similar to the ASI data, but it did not show the same strength of effect, with 

parameter values smaller than those from the ASI model (Table 5.1). Nevertheless, both 

covariates match the pattern from the ASI model, with increasing encounter probability to the 

north and later in the season. Posterior distributions (Fig. A5.3) and chains (Fig. A5.4) are 

provided in Appendix A5.1. 
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Figure 5.3:  Posterior estimates and Bayesian credible intervals of the community science 

logistic model (Flickr & iNaturalist). As previously, the northern and southern regions refer to 

sites north and south of 64⁰S. 

 

 



 

95 

 

5.4.3 Site-wise Abundance 
 

Similar to the logistic models, latitude and week both had positive effects on abundance 

(Table 5.2). More northerly latitudes had higher abundances (Fig. 5.4B), and abundance 

increased over the course of a season (Fig. 5.4C). In more northerly latitudes and towards the end 

of the summer (February and March), our uncertainty grows, as the data present a wide range of 

abundances (Fig. 5.4B,C). Our estimate for the effect of year indicated a small increase over time 

(Fig 5.4A; Table 5.2). Posterior distributions (Fig. A5.5), model fit (Fig. A5.6), and posterior 

chains (Fig. A5.7) are included in Appendix A5.1. 

Table 5.2: Estimates and 95% credible intervals for parameters in the Gamma abundance model.  

Covariate Coefficient Estimate 

Intercept −101.06 (−186.50 − 16.47) 

Year 0.08 (0.03, 0.12) 

Latitude 0.83 (0.69, 0.98) 

Week 0.47 (0.02, 0.71) 
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Figure 5.4: Gamma model outcomes for each parameter. Each dot represents a survey of a site during which abundance was recorded. 

Blue dots in panels B and C refer to sites north of -64⁰S, and red dots south of that latitude. The northern region encompasses the 

South Shetland Islands and a portion of the northern Antarctic Peninsula. For panel  C, Week  0 begins on Jan. 1.

A B C 
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Two outliers – the only two records of abundance in excess of 1000 – were removed from 

the final models as they exerted substantial control over the parameter estimates, particularly for 

Year, as both outliers came from 2004. With outliers included, there is a negative effect of Year, 

suggesting that abundance has declined since the 1990s (95% C.I.: -0.06, 0.02; Appendix Table 

A5.1), though the credible intervals overlap with zero. Without the outliers, the estimate for this 

parameter remains slightly positive. The sign for the other coefficients remains the same, though 

the effect of week becomes smaller, and latitude becomes stronger (Table A5.1). Posterior 

distributions (Figure A5.8), model fit (Figure A5.9), and posterior chains (Figure A5.10) are 

provided in Appendix A5.2 for comparison. 

5.4.4 Sentinel-species Comparison 
 

Across the entire region, our linear model found a weak negative relationship between 

penguin reproductive success and fur seal encounter probability (Table 5.3), however the 95% 

credible intervals substantially overlapped with zero. At the level of individual regions, all 

models were equivocal, with credible intervals overlapping zero. The estimate of the slope for 

both the Northeast and Southwest was negative, the South Shetland Islands slightly positive, and 

the Central West positive (Figure 5.5). 
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Table 5.3: Linear model comparing Adélie penguin reproductive success and fur seal encounter 

probability. 

Model 
Slope Posterior 

Estimate 

Peninsula-Wide Model −0.08 (−0.38, 0.24) 

South Shetland Islands    0.00 (−0.51, 0.47) 

Northeast −0.20 (−0.61, 0.21) 

Central West    0.13 (−0.41, 0.78) 

Southwest −0.14 (−1.00, 0.90) 
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Figure 5.5: Fur seal encounters as a function of Adélie penguin reproductive success.  
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5.5 Discussion 

 

 

 

The recovery of the Antarctic fur seal has coincided with the formalization of marine 

resource management in the Southern Ocean (Bonner 1990). The Convention for the 

Conservation of Antarctic Marine Living Resources (CCAMLR) provides management for 

Antarctic resources such as the Antarctic krill fishery and sets policy for other taxa based on 

treaty documents such as the Convention for the Conservation of Antarctic Seals (Bonner 1990). 

At the same time, the regional distribution and density of Antarctic krill has changed (Atkinson 

et al. 2004; Atkindson et al. 2019), such that an increase in a krill predator population has in 

some places coincided with a substantial prey reduction (Trathan & Hill 2016). From the South 

Georgia population alone, total annual krill consumption could be as high as 6.8 million tons 

(Trathan & Hill 2016). The spatial and temporal patterns of abundance of both predators and krill 

are complex. Given the challenges of disentangling these relationships, improving the spatial 

extent of monitoring for many krill-predator species is warranted. 

While Antarctic fur seal population declines are evident at Cape Shirreff and Bird Island, 

there is poor documentation for the population trajectory of other breeding colonies in either the 

Antarctic Peninsula or South Georgia. The notable difference in density between colonies on 

South Georgia (Staniland et al. 2011; Foley 2019), suggests that lessons from Bird Island may 

not be readily generalizable across South Georgia though there is evidence to suggest that the 

mechanisms of decline across the South Shetland Islands are similar among sites (Krause & 

Hinke 2021). 
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Our data contained two outliers where abundance was significantly higher than expected 

based on the other data available; notably, both outliers came from the same day and from sites 

only 28 km from one another. These observations suggest that fur seals may occasionally 

congregate in very high numbers but that such haul-out sites may be difficult to find in areas that 

are not frequented by tourists. While two data points are inconclusive, they suggest that the 

distribution and especially the site-wise abundance of fur seals may be highly pulsed and 

variable, such that a consistent sampling effort may be required to understand these patterns. Fur 

seals are visible in sub-meter satellite imagery (Foley 2019), which makes future surveys of the 

Antarctic coastline for such haul-outs feasible.   

Tay Head on Joinville Island off the northern coast of the Antarctic Peninsula, one of the two 

sites with outlier counts, lies in an area with limited survey effort and only appears in ASI 

records 5 times in 28 years. In late February 2002, the ASI recorded an estimated 1500 seals at 

this site. Of the 5 total surveys at Tay Head, however, 3 occurred in 2002, less than a month 

apart; on January 25, we recorded 14 seals, and on February 4, 20 seals. There are more 

observations for the second outlier site – Paulet Island – though the raw data are similarly 

suggestive, pointing to at least some years in which the abundance of fur seals increases 

dramatically towards the end of the summer. Timelapse camera surveys of such sites, such as 

those already common for penguin colony monitoring (Youngflesh et al. 2020), may be another 

means of improving our understanding of the temporal patterns of such aggregations. 

While there is evidence for strong natal philopatry at breeding colonies (Hoffman & Forcada 

2012) and fidelity to broad foraging regions (Arthur et al. 2015), there is little to no evidence to 

support or refute the idea that Antarctic fur seals show haul-out site fidelity outside the breeding 

season. The pulses recorded in these surveys may be fleeting or may be permanent late-season 
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features. Given the ability of these outlying data points to exert some control over our 

understanding of an annual trend in abundance, our finding of a slight increase should be 

interpreted in light of our weak understanding of post-breeding season behavior in this species. 

 The regions in which our surveys detect the highest encounter rates are also frequently 

adjacent to areas that are rarely or never surveyed (Figure 5.6). As most sites in the ASI database 

are of nesting seabird colonies and it is reasonable to assume that fur seals and nesting penguins 

have different onshore habitat requirements, it is possible that large areas of fur seal haul-out 

habitat remain un-surveyed. The limitations of this dataset suggest that further evidence for 

abundance increases or range expansion could be missed. Moreover, the focus towards penguin 

censuses within this dataset presents several potential biases, which we have not tested here: 1) 

the potential for observers to avoid estimating abundance when it is large (i.e., not enough time 

to count, not enough confidence to estimate), and 2) the potential for observers to avoid 

estimating when abundance is small (i.e., low abundance is normal and unremarkable, larger 

aggregations are interesting and worth counting). Given the turnover of observers over time, 

such biases are not necessarily consistent across the dataset and make estimating detection 

probability more difficult.  
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Figure 5.6: Encounter rate from ASI surveys over the decades. X denotes a site that was not surveyed during that decade.   
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 Of particular note, we found little evidence of a relationship between Adélie penguin 

reproductive success and fur seal encounter rate. While the two statistics measure different 

processes, they each hint at the population dynamics of the species. Penguins are frequently cited 

as “sentinels” of change in the Southern Ocean (Miller & Davis 1993; Ainley 2002; Boersma 

2008), but our inconclusive results suggest that caution is warranted in the degree to which we 

can infer the population trends of other species based upon a single or several well-observed 

species. Given recent and long-term changes in the populations of Antarctic fur seals in the 

Antarctic Peninsula and South Georgia, the lack of a strong relationship provides further 

evidence that monitoring of spatiotemporal patterns of use in this species is needed to fully 

understand the dynamics of this system. 

Recent declines in pup production at both Bird Island in South Georgia (Forcada & Hoffman 

2014) and Cape Shirreff in the South Shetland Islands (Goebel et al. 2011) point to several 

independent drivers of change. Declines in pup production (Forcada et al. 2005) and female 

abundance (~35% decline; Forcada & Hoffman 2014) at Bird Island coincided with positive sea 

surface temperature anomalies around South Georgia, potentially altering prey availability 

(Forcada et al. 2005), particularly for Antarctic krill (Forcada & Hoffman 2014). At Cape 

Shirreff, following a peak in the early 2000s, pup production declined by around 13% yr-1 

through 2011 (Goebel et al. 2011), with further overall population decline in the years since 

(Krause & Hinke 2021). Similarly, first-year survival has remained low in recent decades 

(Schwarz et al. 2013).  

Beyond changes to prey availability, increases in the abundance of fur-seal predators may 

also play a role in the observed population declines at both sites. In South Georgia, the increase 

in the population of northern (Macronectes halli) and southern (M. giganteus) giant petrels is 
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thought to be related to the decades-long increase in the population of Antarctic fur seals (Poncet 

et al. 2019), whose pups are a source of prey during the breeding season (Nagel et al. 2021). In 

the South Shetland Islands, predation on fur seal pups is also an important source of first-year 

mortality. An increasing abundance of leopard seals (Hydrurga leptonyx) in the area has resulted 

in a commensurate increase in predation (Boveng et al. 1998; Goebel et al. 2011; Krause et al. 

2015), though as reproductive output has decreased, so too has the availability of fur seal pups as 

prey for this generalist predator (Krause et al. 2020). Density-dependent pup mortality, such as 

trampling, also plays some role (Doidge et al. 1984; Reid & Forcada 2005), though the degree to 

which it is exacerbated by declining prey availability (i.e., starvation), or ameliorated by 

declining pup production is less clear, with some evidence for negative density dependence due 

to predation in South Georgia (Nagel et al. 2021). Evidence for inbreeding at Bird Island 

(Humble et al. 2020), increasing heterozygosity among younger cohorts (Forcada & Hoffman 

2014), and sex-specific differences in immigration to Livingston Island (Bonin 2012), suggests 

further lines of inquiry.  

While the data presented herein represent the fullest picture of fur seal distribution and 

movement around the Antarctic Peninsula to date, the real power of this field survey and ‘found 

data’ approach has been to highlight gaps in our understanding about how fur seals interact with 

the Antarctic Peninsula ecosystem. Antarctic fur seals, as an abundant predator, represent just 

one such species, but the fact of their apparent seasonal southward expansion could have 

important effects on the post-fledging success of penguins in the region or on migratory baleen 

whales, all potential competitors for Antarctic krill and fish species. Such an interaction can go 

both ways; the recovery of Humpback whales in the region (Pallin et al. 2018; Zerbini et al. 

2019) may be exerting downward pressure on other krill predators. What little evidence exists 
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for resource partitioning among sympatric krill predators focuses primarily on the partitioning of 

spatial resources, as when Humpback and Antarctic minke whales (Balaenoptera bonaerensis) 

occupy differential strata of the water column but target the same prey (Friedlaender et al. 2009), 

though evidence for partitioning by prey species does exist for some predators (e.g., Herr et al. 

2016). Such evidence suggests some level of competition among krill predators, but it remains 

unclear at what scale competition operates in the region. Without better knowledge of the spatial 

and temporal distribution and overlap among species, assessing this competition, and predicting 

future resource use under changing Antarctic conditions, will remain elusive. 

 Despite the remaining mechanistic questions about interactions among populations and 

species in this region, our models demonstrate that even web-scraped or community-science data 

such as that collected from Flickr or iNaturalist can help confirm natural patterns when data are 

sparse or incomplete, even if they are unsuitable for analysis on their own merits. Even in data-

poor regions or those as remote as Antarctica, occasional observations of species can provide 

additional information to reinforce existing knowledge or modelling efforts (e.g., Dahood et al. 

2019) or open new questions. Given the rapid pace of environmental change in many systems, 

such data should not be ignored. 
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6 Conclusions 
 

 

 

 

Ecological data abound, though often in forms unusual from the perspective of traditional 

ecological inquiry. In this dissertation I have developed the means to find and acquire such data 

and the methodological considerations for employing them in an ecological context. I have done 

so with a view to how such data can be used to augment existing data (i.e., build upon existing 

datasets), supplement our data (i.e., elucidate patterns not captured by our protocols), and 

complement our data (i.e., by giving us confidence in the patterns we have uncovered or by 

demonstrating that patterns exist at scales outside of our scales of inquiry). I have applied these 

methods principally with an interest in elucidating the patterns of distribution for Antarctic krill 

predators across scale but with an eye to their broad applicability across regions, systems, and 

taxa. By focusing on a small and overlooked archipelago off the northern tip of the Antarctic 

Peninsula in Chapter 2, I have demonstrated the breadth of insight available when combining 

historical aerial and satellite remote sensing with contemporary UAV-aerial and ground censuses 

and employing machine-learning classification techniques. This site-specific work substantially 

broadened the landscape of Adélie penguin population dynamics by effectively doubling the 

known population of this species in the region of the Antarctic Peninsula. To Levin’s (1992) 

point, I have established that the mechanisms driving Adélie penguin population declines (e.g., 

Emslie et al. 1998; Lynch & LaRue 2014; Hinke et al. 2017b) are not necessarily operating 

universally at the regional scale, despite considerable discussion of regional phenomena since 

declines have been documented (Cimino et al. 2014; Lynch & LaRue 2014; Cimino et al. 2016). 
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More recent work has indicated that growth rates for penguin colonies are highly stochastic 

among years (Che-Castaldo et al. 2017) and that the temporal scale of analysis has an important 

effect on the shape of the drivers of decline for this species (Iles et al. 2020). 

 For other taxa, information is entirely absent in some regions. This is true of cetaceans 

across much of the ocean but especially the high seas and polar regions (Kaschner et al. 2012). 

Even when attempting to aggregate surveys to improve power, the variability among survey 

methods and species does not clearly improve global insight (Jewell et al. 2012). I have proposed 

and demonstrated a method in Chapter 3 by which consistent surveys of large cetaceans could be 

conducted by combining the spatial extent provided by modern satellite sensing platforms with 

the classification power of deep learning. As a proof-of-concept, this method is already 

successful and can only improve in both its classification accuracy and is scalability.  

 In an effort to work across grain and extent – specifically to provide a ground-level view 

across the regional scale – I have developed methods for incorporating data from ‘eco-social 

sensors’ – those collecting data for social purposes (i.e., sharing with friends and family) rather 

than for research – into existing analyses and datasets in Chapters 4 and 5. These data, even in 

the polar regions, can broaden inference and expose new patterns. By pairing web-crawling 

applications with convolutional neural networks for image classification, we move closer to a 

‘computer vision for ecology’ as proposed by Weinstein (2017) and can handle much larger 

volumes of data than is possible using manual methods. Such AI-powered techniques are 

essential when incorporating information from ‘big data’ sources such as social media platforms, 

since much of the information contained within such platforms is irrelevant to our focused 

ecological questions.  
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 In this way, the complications of an AI and social-sensor approach become evident as 

well. When giving up control of how the data are generated, we must be open to the many ways 

in which the data generators – people – may bias or misrepresent the data they create. There are 

few assumptions that can reasonably be made with such ‘found’ data, and so those assumptions 

that are made must be carefully wrought and intentional. By failing to understand found data and 

the processes by which deep-learning algorithms classify data, we can create new biases and 

reinforce existing biases (Turner Lee 2018; Panch et al. 2019; Sap et al. 2019).  

 Data cast in this light is the milieu for data science, yet domain knowledge, especially 

that of the natural history of a region of interest, is difficult to extract with observations only of 

images of far-away places. Such an approach as I have proposed here, and its natural extensions 

in which analyses may be conducted entirely with web-scraped or social-sensor data, require 

careful and intentional effort in which the data scientific approach is regularly interrogated for its 

biases and any lack of consistency with an intentional observation of a system (Leonelli 2016). 

Considerations such as data privacy (Di Minin et al. 2021) and data infrastructure (Farley et al. 

2018) may be new in many areas of ecology and conservation biology, but solutions should 

similarly be developed alongside applications. 

 Ecology as a big data and data science realm is already showing promise and is emerging 

as a point of collaboration among disparate fields toward a shared goal of developing better 

conservation data streams (e.g., Berger-Wolf et al. 2017). Such approaches can provide a path 

around the potential diminishing returns of investment in expansive field studies for conservation 

planning (Grantham et al. 2008), substantially reducing the cost of data collection by augmenting 

and supplementing fieldwork. But more broadly, imaginative approaches create new 
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opportunities for global inquiry and synthesis, and promise for timeliness in an era of rapid 

change. 
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Appendix A2 
 

This appendix relates supplementary material from Chapter 2: Multi-modal survey of Adélie penguin mega-colonies reveals the 

Danger Islands as a seabird hotspot. 

Table A2.1: P - species present, N - species present and nesting, A - absent, '--' - not observed 

* Given the reports of hybridization between Brown skuas (S. antarcticus) and south polar skuas (S. maccormicki) (Ritz et al. 2006), we 

did not attempt to assess the species of skua present. 

 

Species Beagle Brash Comb Darwin 

Dixey 

Rock Earle Etna Heroina Platter Scud Rock 

Birds           
Adélie penguin 

(Pygoscelis adeliae) N N N N  N N N N  
Gentoo penguin  

(Pygoscelis papua) N N   N  N N  
Chinstrap penguin  

(Pygoscelis antarctica) A A   A  N A  
Antarctic shag  

(Phalacrocorax atriceps) -- --   N   N  
Skua species  

(Stercorarius spp.)* P P   N   P  
Southern giant petrel  

(Macronectes giganteus) P --   --   P  
Cape (pintado) petrel  

(Daption capense) -- --   --   N  
Snow petrel  

(Pagodroma nivea) -- N   P   --  
Wilson's storm petrel  

(Oceanites oceanicus) N --   --   P  
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Kelp gull  

(Larus dominicanus) N P   P   P  
Snowy sheathbill  

(Chionis albus) N N   N   N  
Antarctic tern  

(Sterna vittata) -- P   --   --  

Species Beagle Brash Comb Darwin 

Dixey 

Rock Earle Etna Heroina Platter Scud Rock 

Plants           
Antarctic hairgrass  

(Deschampsia antarctica) -- --   --   --  
Seals           
Weddell seal  

(Leptonychotes weddelli) -- P  

 

 P   P  
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Appendix A3 
 

 

 

This appendix relates supplementary material from Chapter 3: Aerial-trained deep 

learning networks for surveying cetaceans from satellite imagery 

 

Table A3.1  

We acquired imagery from Digital Globe’s WorldView-3 sensor via the Digital Globe 

Foundation. See https://discover.digitalglobe.com/ for details on individual scenes and a preview. 

 

Scene ID Location Date 

1040010003121A00 Peninsula Valdes, 

Argentina 

14 Oct. 2014 

1040010029924200 Maui, Hawaii, USA 13 Feb. 2013 

 

 

  

https://discover.digitalglobe.com/
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Appendix A4 
 

 

 

6.1 Appendix A4.1 

The full training set included southern elephant seals (n=614), crabeater seals (n=464), 

Antarctic fur seals (n=533), harp seals (n=30), leopard seals (n=518), Ross seals (n=45), Weddell 

seals (n=743), an ‘other’ seal category (n=140) for those seals not captured by the previous 

categories, and a non-seal category for anything else (n=1174). While our focus was on Weddell 

seals, including classes for other species that are likely to be encountered in the imagery should 

improve the performance of our classifier. For example, including a harp seal class – a species 

found only in the northern hemisphere – seemed prudent given the possibility of mistaking 

Arctic and Antarctic regions. Even absent any of these seals in the data, this extra class provides 

the model with more certainty about how the species of Antarctic seal differ visually from other 

species. For example, other species of non-Antarctic seal are far more similar to Weddell seals 

than they are to the many different ways an image could be ‘non-seal’ (e.g., an iceberg). 

The training set for building the CNN classification model comprised a mix of images 

provided from the authors’ own collections as well as those collected from a Google Image 

search for Antarctic seals. Our intent was to capture roughly the types of photographs likely to be 

shared by visitors to Antarctica, including seals at different angles and distances and images of 

whales, landscapes, penguins, and other types of non-marine mammal seals, such as Navy 

SEALs or the singer Seal (Fig S1A). To validate our models, we retained a roughly similar 

number of randomly-selected images from all the above categories. 

 

Figure A4.1: Examples of images obtained from a web-crawler search for ‘Antarctica+seal’.  An 

Antarctic landscape, a Weddell seal tagged correctly, Robin Williams at the Happy Feet premier 

(a plot summary included the word ‘seal’). Photographs courtesy Flickr users kthypryn (CC BY 

2.0), Gregory Smith (CC BY-SA 2.0), Eva Rinaldi (CC BY-SA 2.0) 
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6.2 Appendix A4.2 

To be included in the catalog as a new individual, images must meet standards of quality. 

The focus, resolution, contrast, lighting, angle, and visibility of the ventral region must not 

reasonably prevent a future match from being made. Distinctiveness, a separate measure, is 

primarily a measure of molt stage in this scheme, as individuals with old, worn fur have 

indistinct patterning. Individuals with nearly solid coloration (i.e., very minimal patterning) may 

also be rated as indistinct.  

Individuals with distinctiveness ratings of 3/3 are not included in the catalog since it is 

unlikely that we can positively match them without distinctive features. Individuals with 

summed quality ratings ≥ 8 are not included in the catalog. As such, an image with a perfect 

score in 3 categories but the worst score, 5/5, in another category will not be included. 

 

Focus and clarity 

Here we focused on the sharpness of the seal in the image and the resolution. An out-of-focus 

image (or an image in which the focus is on something other than the seal) would receive a low 

rating, as would an image of a seal in the distance such that, when zoomed in, the resolution of 

the seal was poor. Images were rated from 1 (best) – 5 (worst) on this scale.  

Examples: 

 

Figure A4.2: After zooming in to this image, much of the pattern is still visible, but the detail is 

less clear. In this category, it rates at 2/5. 
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Figure A4.3: Poor focus. Some detail is visible which might allow this seal to be matched to an 

image in the catalog, but is not sufficient to be introduced as a new individual. 4/5 

Contrast and Lighting 

In this category, we consider whether the lighting creates conditions which prevent matching. 

This could be strong shadows or glare which cannot be recovered using photo-editing software 

or over- or under-exposure. 

Examples: 

 

Figure A4.4: An underexposed image. Much of the pattern is still visible, but subtle shading 

differences can't be assessed. 4/5 
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Figure A4.5: Bright glare on the flank of the seal is outside of the main ventral area of interest, 

but removes some detail. 3/5 

Angle 

Extreme angles can both obscure our view of the relevant area and make both human and 

machine methods unreliable for matching. 

Examples: 

 

Figure A4.6: An extreme angle means much of the ventral region is out of view. 4/5 
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Figure A4.7: A seal at a roughly 45-degree angle. Some of the neck region is out of view, but 

much of the pattern is visible. 3/5 

 

Visibility of the ventral region 

The ventral region can be obscured from a variety of sources. Seals resting for long periods of 

time may sink into slowly-melting holes, flippers may cover the region, rocks and snow piled up 

in front of the seal can block the region from view. Similarly, seals resting on their ventral region 

can obscure the region. 

Examples: 

 

Figure A4.8: A seal lying on its front. Only a small section of the ventral region is visible. 5/5 
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Figure A4.9: Only a portion of this seal was included in the photograph. The pattern on the neck 

may be sufficient to match an individual to the catalog, but it is insufficient for inclusion as a 

new individual. 4/5 

 

Figure A4.10: Ice and snow on this iceberg obscure half of the seal. 4/5 
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EXAMPLE RANKINGS:

 

Figure A4.11: Focus/Clarity: 1/5; Light/Contrast: 1/5; Angle: 1/5; Ventral: 2/5; Distinctiveness: 

3/3. Nearly perfect, however the seal is about to molt and much of the fur is worn, obscuring the 

patterning. Q: 5, D: 3 

 

Figure A4.12: Focus/Clarity: 1/5; Light/Contrast: 2/5; Angle 1/5; Ventral: 4/5. Dist: 1.  The 

image is sharp but much of the seal is obscured and there are shadows and glare. Q: 8, D: 1 

 

Figure A4.13: Focus/clarity: 1/5; Light/contrast: 3/5; Angle: 1/5; Ventral: 1/5. Dist: 1/5. The 

glare and exposure create some limitations. Q: 6, D: 1 
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Figure A4.14: Focus/clarity: 2/5; Light/contrast: 4/5; Angle: 2/5; Ventral: 3/5. Dist: 1/5. The 

exposure, resolution, and ventral visibility combine to make this a difficult image. Q: 11, D: 1. 
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6.3 Appendix A4.3 

Table A4.3: Flickr web crawler queries. Each site was queried with a minimum and maximum date (in Unix timestamps), coordinates 

for the center of a radial geographic search, the radius of the search in kilometers, and the search term “seal.” The number of images 

returned are noted. Such a search excludes all images that are not geo-tagged. 

Site Code 

Max Date 

Unix Min_Date_Unix Lat Long 

Radius 

(km) # of images 

Search 

term Full site name 

HALF 1554076800 1096588800 -62.59 -59.92 32 139 seal Half Moon Island 

HANN 1554076800 1096588800 -62.65 -60.62 32 103 seal Hannah Point 

WHAL 1554076800 1096588800 -62.98 -60.56 32 44 seal Whaler's Bay 

GOUR 1554076800 1096588800 -63.19 -57.31 32 0 seal Gourdin Island 

HOPE 1554076800 1096588800 -63.4 -57 32 8 seal Hope Bay 

PAUL 1554076800 1096588800 -63.57 -55.78 32 14 seal Paulet Island 

MIKK 1554076800 1096588800 -63.9 -60.78 32 79 seal Mikkelsen Harbour 

HYDR 1554076800 1096588800 -64.15 -61.64 32 3 seal Hydrurga Rocks 

STER 1554076800 1096588800 -64.2 -60.98 32 4 seal Sterneck Island 

MELC 1554076800 1096588800 -64.31 -62.96 32 21 seal Melchior Islands 

FournierBay 1554076800 1096588800 -64.46 -63.12 32 7 seal Fournier Bay 

POPT 1554076800 1096588800 -64.5 -61.76 32 4 seal Portal Point 

WilhelminaBay 1554076800 1096588800 -64.62 -62.06 32 289 seal Wilhelmina Bay 

CUVE 1554076800 1096588800 -64.69 -62.62 32 0 seal Cuverville Island 

LITC 1554076800 1096588800 -64.77 -64.09 32 20 seal Litchfield Island 

JOUG 1554076800 1096588800 -64.83 -63.5 32 24 seal Jougla Point 

NEKO 1554076800 1096588800 -64.84 -62.53 32 41 seal Neko Harbour 

ALMI 1554076800 1096588800 -64.9 -62.87 32 0 seal 

Almirante Brown 

Station 

PETE 1554076800 1096588800 -65.18 -64.13 32 152 seal Petermann Island 

DETA 1554076800 1096588800 -66.88 -66.82 32 26 seal Detaille Island 
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6.4 Appendix A4.4 

Individual 1 was sighted at Georges Point on 25 Dec. 2015, and at Mikkelsen Harbour on 26 

Dec. 2015 (125 km straight-line distance). 

 

Figure A4.15: Image of Seal 1 at Georges Pt. on 25 Dec 2015 

 

Figure A4.16: Image of Seal 1 at Mikkelsen Hbr. on 26 Dec 2015 

 

 

 

 

 

 

 

 

 

 

 

Individual 2 may have travelled between Georges Point and Mikkelsen Harbour (125 km 

straight-line distance). Both were photographed at Mikkelsen Hbr. on the same day, and may 

have both been photographed at Georges Point the day before. 
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Figure A4.17: Suggestive of Seal 2, but an inconclusive image from Georges Point on 25 

December 2015 

 

Figure A4.18: Image of Seal 2 at Mikkelsen Harbour on 26 Dec 2015 

 

Figure A4.19: Image of Seal 2 at Half Moon Island on 27 Dec 2015 
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6.5 Appendix A4.5 

 

Figure A4.20: Distributional map of Antarctic pinnipeds, drawn from Flickr images. 
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Appendix A5 
 

 

 

6.6 Appendix A5.1 

Posterior estimates and model fits. 

 

Figure A5.1: Posterior parameter distributions from the logistic model using ASI data. Dark blue 

bands represent the 50% credible intervals, and light blue bands the 90% credible intervals.
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Figure A5.2: Posterior chains from the logistic model using ASI data. 
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Figure A5.3: Parameter posterior distributions from the logistic community science (Flickr & 

iNaturalist) model. Dark blue lines represent the 50% credible intervals and light blue bands the 

90% credible intervals. 
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Figure A5.4: Posterior chains from the logistic model using community science data (Flickr & iNaturalist). 
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Figure A5.5: Posterior distributions for parameters from the Gamma abundance model. Dark 

blue bands represent 50% credible intervals, and light blue bands represent 90% credible 

intervals.  
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Figure A5.6: Gamma GLM fit for fur seal site-wise abundance. Blue lines represent posterior 

draws; the black line is the ASI data. 
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Figure A5.7: Posterior chains from the Gamma abundance model. 
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6.7 Appendix A5.2 

 

 

Posterior estimates from the Gamma model when two outliers are included. 

Table A5.1: Posterior coefficient estimates for the Gamma abundance model with and without 

outliers. 

Covariate Coefficient Estimate  

(With Outliers) 

Coefficient Estimate 

(Without Outliers) 

Intercept 17.44 (17.44, 194.46) −101.06 (−186.50, 16.47) 

Year −0.02 (−0.07, 0.02) 0.08 (0.03, 0.12) 

Latitude 0.94 (0.78, 1.09) 0.83 (0.69, 0.98) 

Week 0.03 (0.00, 0.05) 0.47 (0.02, 0.71) 
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Figure A5.8: Model fits for the Gamma model when outliers are excluded (A) or included (B). 
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Figure A5.9: Posterior distributions from the Gamma abundance model when  (A) outliers are 

excluded or (B) included. 
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Figure A5.10: Posterior MCMC chains from the Gamma abundance model when outliers are included.
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Hay, hermanos, muchísimo que hacer. 

César Vallejo 
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