Congrats to Bento and Catie!

Congratulations to Bento Goncalves, who was recently announced as one of the 2017 IACS Jr. Research Award Winners. This award will help support Bento’s thesis research on using ‘deep learning’ for pack ice seal surveys. Congratulations as well to Catie Foley, who was one of the winners of the 1st Annual STRIDE visualization contest. Nice work!

Advertisements

High School Student Research Highlighted at Annual Stony Brook Women in Science & Engineering Event

Lynch Lab Ph.D. candidate Catie Foley has spent this academic year mentoring seniors from Patchogue-Medford High School enrolled in Stony Brook’s High School Women in Science and Engineering (WISE) Program. The group met weekly to discuss population & spatial ecology and the students designed independent projects ranging from habitat modeling of seabirds to photo identification of seals. This week, the student’s research was highlighted during a poster session at Stony Brook’s annual High School WISE Capstone Ceremony.
Congratulations, ladies!
20170425_171508

Lynch Lab Represents at Stony Brook Undergraduate Research & Creativity Symposium

This week, six undergraduates from the Lynch Lab presented their research at Stony Brook’s Undergraduate Research & Creative Activities (URECA) Symposium:

Adaptive Significance of King Penguin (Aptenodytes patagonicus) Crèches
Lisa Caligiuri, Catherine Foley, and Heather Lynch

Variation in Population Dynamics of King Penguins, Aptenodytes patagonicus, Across Phylogenetic and Regional Scales
Vanessa Kennelly, Maureen Lynch, Catherine Foley, and Heather Lynch

Variation in the ecstatic display call of the gentoo penguin (Pygoscelis papua) associated with behavioral responses
Medha Pandey, Maureen Lynch, and Heather Lynch

Climate indices explain variation in fur seal pup mortality
Katla Thorsen, Casey Youngflesh, and Heather Lynch

The Effect of Oceanographic Conditions on Pygoscelis Penguin Population Dynamics
Arianna West, Catherine Foley, Heather Lynch

Phylogenetic Relationships between Conservation Risk and Life History Traits in Seabirds
Helen Wong, Maureen Lynch, Heather Lynch

Congratulations ​to each of these outstanding students!

20170426_131802.jpg20170426_152316IMG_2575IMG_258020170426_133108IMG_2571

Lynch Lab Undergraduate Student Wins Summer Research Award

The Lynch Lab is proud to announce that Sara Vincent, an undergraduate student working in the lab, has been awarded Stony Brook’s 2017 Undergraduate Research and Creative Activities (URECA) Biology Alumni Research Award. With the receipt of this award, Sara will spend the summer in the lab working on her independent project examining the spatial patterns of elephant seal harems.

Congratulations, Sara!

Visualizing and wrangling MCMC output in R with `MCMCvis`

Model results can be thought of as a reward for the many hours of model design, troubleshooting, re-design, etc. that analyses often require. Following the potentially exhausting mental exercise to acquire these results, I think we’d all like the interpretation to be as straightforward as possible. Analyzing MCMC output from Bayesian analyses, which may include hundreds of parameters and/or derived quantities, however can often require a fair amount of code and (more importantly) time.

The MCMCvis package was designed to alleviate this problem, and streamline the analysis of Bayesian model results. The latest version (0.7.1) is now available on CRAN with bug fixes, speed improvements, and added functionality.

 

Why MCMCvis?

Using MCMCvis provides three principal benefits:

1) MCMC output fit with Stan, JAGS, or other MCMC samplers can be fed into all package functions as an argument with no further manipulation needed. No need to specify the type of object or how it was fit; the package does all of that behind the scenes.

2) Specific parameters or derived quantities of interest can be specified within each function, to avoid additional steps of data processing. This works using a grep like call for optimal efficiency.

3) The package creates ‘publication-ready’ posterior estimate visualizations (below). Parameters can now be plotted vertically or horizontally.

rplot

The package has four functions for basic MCMC output tasks:

MCMCsummary – summarize MCMC output for particular parameters of interest

MCMCtrace – create trace and density plots of MCMC chains for particular parameters of interest

MCMCchains – easily extract posterior chains from MCMC output for particular parameters of interest

MCMCplot – create caterpillar plots from MCMC output for particular parameters of interest

The vignette can be found here.

 

An example workflow may go as follows:

– summarize posterior estimates for just beta parameters

#install package
install.packages('MCMCvis')

#load package
require(MCMCvis)

#load example data
data(MCMC_data)

#run summary function
MCMCsummary(MCMC_data, 
             params = 'beta')
##            mean   2.5%    50% 97.5% Rhat
## beta[1]    0.16   0.06   0.15  0.25    1
## beta[2]   -7.77 -25.82  -7.68  9.78    1
## beta[3]   -5.64 -28.53  -5.76 17.23    1
## beta[4]  -10.39 -25.98 -10.63  5.27    1
## beta[5]    7.52   6.03   7.52  9.05    1
## beta[6]   10.89  10.10  10.89 11.68    1
## beta[7]   -1.91  -4.83  -1.92  1.08    1
## beta[8]    5.38  -6.86   5.45 17.67    1
## beta[9]   13.39   3.28  13.38 23.60    1
## beta[10]  17.63  14.41  17.63 20.86    1

– check posteriors for convergence

MCMCtrace(MCMC_data, 
           params = c('beta[1]', 'beta[2]', 'beta[3]'), 
           ind = TRUE)

rplot01

– extract chains for beta parameters so that they can be manipulated directly

ex <- MCMCchains(MCMC_data, params = 'beta')
#find 22nd quantile for all beta parameters
apply(ex, 2, function(x){round(quantile(x, probs = 0.22), digits = 2)})
##  beta[1]  beta[2]  beta[3]  beta[4]  beta[5]  beta[6]  beta[7]  beta[8]  beta[9] beta[10] 
##    0.12   -14.86   -14.80   -16.48     6.91    10.58    -3.09     0.68     9.29    16.36

– create caterpillar plots for posterior estimates. Shading represents whether 50% CI (gray with open circle), 95% CI (gray with closed circle), or neither (black) overlap 0. This option can be turned off (as below). A variety of options exist, including the ability to plot posteriors vertically rather than horizontally

MCMCplot(MCMC_data, 
          params = 'beta', 
          horiz = FALSE,
          rank = TRUE,
          ref_ovl = FALSE,
          xlab = 'My x-axis label', 
          main = 'MCMCvis plot', 
          labels = c('First param', 'Second param', 'Third param', 
          'Fourth param', 'Fifth param', 'Sixth param', 'Seventh param', 
          'Eighth param', 'Nineth param', 'Tenth param'), 
          labels_sz = 1.5, med_sz = 2, thick_sz = 7, thin_sz = 3, 
          ax_sz = 4, main_text_sz = 2)

 rplot03

Follow Casey Youngflesh on Twitter @caseyyoungflesh. The MCMCvis source code can be found on GitHub.

NASA press release for Lynch Lab-developed penguin monitoring tool

Latest press release from NASA about the Mapping Application for Penguin Populations and Projected Dynamics (MAPPPD) tool, developed as a part of a NASA-funded project. The development of MAPPPD was led by lab PI Heather Lynch and NASA Goddard Space Flight Center Scientist Mathew Schwaller, with the goal of making scientific data more accessible to Antarctic scientists and decision makers. The tool will provide necessary information for key conservation-decisions in the region.

MAPPPD allows users to explore population trends in different regions of Antarctic by selecting an area of interest. It is also designed to incorporate information from citizen scientists in order to ‘fill in the gaps’ in knowledge in the Antarctic.

Learn more about MAPPPD here!